
NASA/CR-1999-209321

The Formal Semantics of PVS

Sam Owre and Natarajan Shankar

SRI International, Menlo Park, California

May 1999

The NASA STI Program Office ... in Profile

Since its founding, NASA has been dedicated to
the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key
part in helping NASA maintain this important
role.

The NASA STI Program Office is operated by
Langley Research Center, the lead center for
NASA's scientific and technical information. The

NASA STI Program Office provides access to the
NASA STI Database, the largest collection of
aeronautical and space science STI in the world.
The Program Office is also NASA's institutional
mechanism for disseminating the results of its
research and development activities. These
results are published by NASA in the NASA STI
Report Series, which includes the following
report types:

TECHNICAL PUBLICATION. Reports of
completed research or a major significant
phase of research that present the results of
NASA programs and include extensive
data or theoretical analysis. Includes
compilations of significant scientific and
technical data and information deemed to

be of continuing reference value. NASA
counterpart of peer-reviewed formal
professional papers, but having less
stringent limitations on manuscript length
and extent of graphic presentations.

TECHNICAL MEMORANDUM. Scientific

and technical findings that are preliminary
or of specialized interest, e.g., quick release
reports, working papers, and
bibliographies that contain minimal
annotation. Does not contain extensive

analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored
contractors and grantees.

CONFERENCE PUBLICATION. Collected

papers from scientific and technical
conferences, symposia, seminars, or other
meetings sponsored or co-sponsored by
NASA.

SPECIAL PUBLICATION. Scientific,
technical, or historical information from

NASA programs, projects, and missions,
often concerned with subjects having
substantial public interest.

TECHNICAL TRANSLATION. English-
language translations of foreign scientific
and technical material pertinent to NASA's
mission.

Specialized services that complement the STI
Program Office's diverse offerings include
creating custom thesauri, building customized
databases, organizing and publishing research
results ... even providing videos.

For more information about the NASA STI

Program Office, see the following:

• Access the NASA STI Program Home Page
at http'//www.sti.nasa.gov

• E-mail your question via the Internet to
help@sti.nasa.gov

• Fax your question to the NASA STI Help
Desk at (301) 621-0134

• Phone the NASA STI Help Desk at
(301) 621-0390

Write to:

NASA STI Help Desk
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320

NASA/CR-1999-209321

The Formal Semantics of PVS

Sam Owre and Natarajan Shankar

SRI International, Menlo Park, California

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

Prepared for Langley Research Center
under Contract NAS1-18969

May 1999

Available from:

NASA Center for AeroSpace Information (CASI)
7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

National Technical Information Service (NTIS)
5285 Port Royal Road

Springfield, VA 22161-2171
(703) 605-6000

Abstract

A specification language is a medium for expressing what is computed

rather than how it is computed. Specification languages share some features

with programming languages but are also different in several important ways.

For our purpose, a specification language is a logic within which the behavior

of computational systems can be formalized. Although a specification can be

used to simulate the behavior of such systems, we mainly use specifications to

state and prove system properties with mechanical assistance.

We present the formal semantics of the specification language of SRI's

Prototype Verification System (PVS). This specification language is based on

the simply typed lambda calculus. The novelty in PVS is that it contains very

expressive language features whose static analysis (e.g., typechecking) requires

the assistance of a theorem prover. The formal semantics illuminates several of

the design considerations underlying PVS, particularly the interaction between

theorem proving and typechecking.

°°°

lll

Contents

1

2

3

4

Introduction 1

1.1 Real versus Idealized PVS 2

1.2 Semantic Preliminaries 3

1.3 Related Work 5

1.4 Outline 7

The

2.1

2.2

2.3

2.4

2.5

2.6

Simple Type Theory 9

Contexts 10

Type Rules 10

Semantics 12

Some Syntactic Operations 16

Type Definitions 17

Summary 18

Adding Subtypes 20

3.1 Summary 29

Dependent Types 30

4.1 Summary 40

5 Theories and Parametric Theories

6

41

5.1 Theories without Parameters 41

5.2 Constant Definitions 45

5.3 Parametric Theories 45

5.4 Summary 48

Conditional Expressions and Logical Connectives 49

6.1 Summary 52

V

7 Proof Theory of PVS

7.1 PVS Proof Rules

7.1.1 Structural Rules

7.1.2 Cut Rule

7.1.3 Propositional Axioms

7.1.4 Context Rules

7.1.5 Conditional Rules

7.1.6 Equality Rules

7.1.7 Boolean Equality Rules
7.1.8 Reduction Rules

7.1.9 Extensionality Rules

7.1.10 Type Constraint Rule

7.2 Soundness of the Proof Rules

7.3 Summary

8 Conclusion

Bibliography

53

53

53

54

54

55

55

55

56

56

56

57

57

60

61

64

vi

Chapter 1

Introduction

PVS is a system for specifying and verifying properties of digital hardware

and software systems. The specification language of PVS is designed to admit

succinct, readable, and logically meaningful specifications. The PVS specifica-

tion language is designed for effective proof construction rather than efficient

execution. The design considerations underlying the language are therefore

somewhat different from those of a corresponding programming language. For

example, the language contains constructs that can be statically typechecked

only with the assistance of a theorem prover. This is acceptable because the

PVS specification language is intended for use in conjunction with powerful

support for automated theorem proving. The logic of PVS is based on a sim-

ply typed higher-order logic with function, record, and product types, and

recursive type definitions. This type system is extended with subtypes that

are analogous to subsets, and with dependently typed functions, records, and

products. The resulting type system has several advantages. It is possible, for

instance, to statically ensure that all array references are within their respec-

tive array bounds. PVS specifications are organized into theories that can be

parametric in types as well as individuals. While the semantics of the simply

typed fragment is straightforward, the extensions such as subtyping, depen-

dent typing, and (theory-level) parametricity do pose significant challenges.

This report presents a concise but idealized definition of the PVS specifica-

tion language and its intended formal set-theoretic semantics. It is neither

an overview of the PVS language nor a guide to the Prototype Verification

System (see the PVS user manuals [OSRSC98]).

The primary purpose of the formal semantics is as a useful reference for the

developers and users of PVS. The idealized core of the specification language

as presented here serves as a succinct foundation for studying the expressive

2 Chapter 1. Introduction

power of the language. Pertinent questions about PVS are answered directly

by the formal semantics presented here:

1. What is the semantic core of the language, and what is just syntactic

sugar?

2. What are the rules for determining whether a given PVS expression is

well typed?

3. How is subtyping handled, and in particular, how are proof obligations

corresponding to subtypes generated?

4. What is the meaning, in set-theoretic terms, of a PVS expression or

assertion?

5. Are the type rules sound with respect to the semantics?

6. Are the proof rules sound with respect to the semantics?

7. What is the form of dependent typing used by PVS, and what kinds of

type dependencies are disallowed by the language?

8. What is the meaning of theory-level parametricity, and what, if any, are

the semantic limits on such parameterization?

9. What language extensions are incompatible with the reference semantics

given here?

Chapter 8 summarizes the answers to these questions.

1.1 Real versus Idealized PVS

The semantic treatment in this report is incomplete in some important ways.

It does not treat the nonlogical parts of the language. In particular, it ignores

arithmetic and recursive definitions. It also omits abstract datatypes [OS97].

These will be treated in a future expanded version.

The present semantics also makes several idealizations from the real PVS

for the purpose of clarity. While the semantic treatment is not comprehensive,

the idealization of PVS used here is faithful to the implemented form of PVS.

1. No name resolution. All names must be in fully resolved form with their

theory name and actual parameters. We regard name resolution as a

convenience provided by the PVS type checker and not an operation

1.2. Semantic Preliminaries 3

with any semantic relevance. A technical description of name resolution

in PVS will be given elsewhere.

2. No overloading. As with name resolution, overloading is a syntactic

convenience with no semantic import.

3. No IPIP©RTINGs. The importing of theories is a hint to name resolution.
The semantic definition assumes that all instances of theories declared

prior to the present one are visible.

4. Variable declarations ignored. All variables must be locally declared.

Global variable declarations are regarded as a syntactic convenience.

5. No records. These are ignored in the semantic treatment since product

types capture all the semantically essential features of records.

1.2 Semantic Preliminaries

The PVS specification language is based on higher-order logic. This means

that variables can range over individuals (such as numbers) as well as functions,

functions of functions, and so on. As is well known, some type distinction is

needed; otherwise, it is easy to obtain a contradiction by defining the predicate

N(P) as =(P(P))so that both N(N) and =N(N) hold. In the theory of

types [Chu40], the universe is stratified into distinct types so that a predicate

can be applied only to a lower type and thus cannot be applied to itself.

Types also serve as a powerful mechanism for detecting syntactic and se-

mantic errors through typechecking. This role of types is best exemplified by

their use in various programming languages such as Algol, Ada, and ML, and

is also heavily emphasized in the PVS type system.

The desirability for strong typing in a specification logic is not widely ac-

cepted. Fraenkel et al [FBHL84] express the opinion that such typing is repug-

nant in a mathematical logic since it constrains expressiveness by not allowing

individuals of differing types to be treated uniformly. Lamport [Lam94] argues

that type correctness is like any other program property and should be estab-

lished by means of a proof rather than by syntactic restraints. Lamport and

Paulson [LP97] analyze the tradeoffs between typed and untyped specification

languages. We claim that

1. Types impose a useful discipline on the specification.

2. Types lead to easy and early detection of a large class of syntactic and

semantic errors.

4 Chapter 1. Introduction

3. Type information is useful in mechanized reasoning.

The semantics of a higher-order logic is given by mapping the well-formed

types of the logic to sets, and the well-formed terms of the logic to elements

of the sets representing their type. The set constructions we use can be for-

malized within Zermelo-Fraenkel set theory with the axiom of choice (ZFC).

The intended interpretation of a function type in higher-order logic is that it

represents the set of all functions from the set representing the domain type to

the set representing the range types. 1 PVS also has predicate subtypes that

are to be interpreted over the subsets of the set representing the parent type.

The semantics of PVS will be given by considering a sequence of increas-

ingly expressive fragments of PVS. The semantics of each fragment of PVS

will be presented in three steps. The first step is to define a set-theoretic

universe containing enough sets to represent the PVS types. The second step

is to define a typechecking operation that determines whether a given PVS

expression is well typed. The third step is to define a semantic function that

assigns a representation in the semantic universe to each well-typed PVS type

and term.

We first lay out the ZFC set constructions needed for defining the semantics

of PVS. The base types in PVS consist of the Booleans bool and the real

numbers real. The Booleans can be modeled by any two-element set, say 2

consisting of the elements 0 and 1, where 0 is the empty set and the only

element of the set 1. The real numbers can be captured by means of Dedekind

cuts or Catchy sequences, and we label this set R.

To define the semantics, we need a universe that contains the sets 2 and

R and is closed under Cartesian products (written as X x Y) and power sets

(written as fo(X)). Note that functions are modeled as graphs, that is, sets

of ordered pairs, so that a function type [A--+B] is represented by a subset of

the powerset fo([A 1 × [BI) of the Cartesian product of the sets [A_ and [B 1

representing A and B, respectively. A set F that is a subset of X x Y is the

graph of a function with domain X and range Y if for every z E X there is

a y E Y such that (z,y) E F, and whenever (z,y) E F and (z,y') E F, we

have y = y'. For such a set F, Function(F) holds and dora(F) = x. The

set of graphs of total functions from a set Y to a set X is represented as X Y.

lit is only in the standard model of higher-order logic that the function type is required
to represent the set of all functions from the domain set to the range set. Higher-order
logic can be interpreted in general models where the function type can be interpreted in
any manner as long as it satisfies the various axioms such as application, abstraction, and
extensionality lAnd86]. Higher-order logic is complete with respect to the general models
interpretation so that a statement that is valid in all models is provable. It is, however,
incomplete with respect to the standard model.

1.3. Related Work 5

If F is the graph of a function and t an element in its domain, then F(t)

represents the result of applying the function F to t. At the semantic level, a

function F will never be applied to an argument t outside dora(F), because in

the PVS language, a function application is typechecked so that the argument

expression has the same type as the domain type of the function expression.

We can model the entire type universe of the simply typed fragment of

PVS by the set U, which is defined cumulatively by starting from the base

sets 2 and R, and including the Cartesian products, the function spaces, and

subsets of previously included sets, at each stage. Cartesian products are used

to model products in PVS, and function spaces model function types. Subsets

are needed to model predicate subtypes. It is sufficient to iterate these stages

up to the ordinal co.

Definition 1.1 (type universe)

U0 = {2, R}

Ui+ 1 = ui u {x × Y l X, Y e Ui} u {xv l x, Y e Ui} u

icw

U = U_

We refer to U as the basic universe. 2 The semantic definitions below will

assign a set in U to each PVS type and an element in U u to each well-typed

term of PVS. The rank of a set X in U is the least i such that X E Ui. The

notion of rank plays an important role in the semantics of dependent types

and parametric theories.

1.3 Related Work

There is a long history of work in specification languages. Many ideas sim-

ilar to those underlying the PVS specification language also occur in other

specification languages.

The wide-spectrum languages are typically based on set theory or higher-

order logic. The language VDM is one of the earliest such specification for-

malisms [Jon90]. It is based on a first-order logic with partial functions aug-

mented with datatype axioms. The datatype theories in VDM include those

2The inclusion of X Y in U is actually redundant but aids clarity.

6 Chapter 1. Introduction

for finite sets, maps, sequences, and recursive datatypes such as lists and trees.

VDM has a notion of datatype invariants that yields a simple form of predicate

subtyping. Operations on state are specified in terms of pre-condition/post-

condition pairs. Specifications are structured into parameterized modules. In

contrast to VDM, the PVS language is based on strictly typed higher-order

logic with a built-in notion of predicate subtyping and dependent typing. The

resulting PVS logic is more compact in that many of the datatypes that are

presented axiomatically in VDM can be defined within PVS. There is no built-

in notion of state in PVS since it is possible to use the higher-order logic of

PVS to define a variety of state-based formalisms, including various linear and

branching-time temporal logics. VDM uses a 3-valued logic for the logical con-

nectives in order to deal with partial functions, whereas PVS uses a classical

2-valued logic and predicate subtyping to assign a type to a partial function

as a total function on its domain of definition. Jones [Jon90] provides only an

informal semantics for VDM. The RAISE system is a comprehensive toolset

based on the ideas of VDM [RAISE92].

The Z specification language [Spi88] is another wide-spectrum language

based on a typed first-order set theory. A Z specification is a collection

of schemas consisting of declarations of types and constants accompanied

with invariants. Z schemas can either specify datatype invariants or pre-

condition/post-condition constraints. A schema calculus is used to combine

schemas using logical connectives. Spivey [Spi88] presents a formal semantics

for Z without giving a proof system or a soundness proof. Spivey's treat-

ment of partial functions in the Z semantics employs the commonly used

convention that f(a) when a is not in the domain of a is some arbitrarily

chosen value. This is fine for most purposes but can be confusing when deal-

ing with recursively defined partial functions. For example, the definition

bad(x) = 1 + bad(x) is everywhere undefined but admitting it as an axiom

leads to an immediate contradiction. Z also lacks any mechanism for conser-

vative extensions such as definitional principles for constants and datatypes so

that the consistency of Z specification has to be demonstrated by exhibiting a

model.

Algebraic specification languages like OBJ [FGJM85] and Larch [GH93]

provide an equational/rewriting framework for specifying datatypes and op-

erations on datatypes. OBJ has many of the same theory parameterization

mechanisms as PVS. The subsort mechanism in OBJ is also similar except

that it is handled by introducing retracts or runtime checks rather than proof

obligations generated by the type checker. The OBJ logic is quite restricted

compared to PVS since it is based on a first-order, equational framework with

an initial semantics where two ground terms are distinct unless they can be

1.4. Outline 7

proved equal. OBJ has very limited support for proof development and is

primarily intended as an executable specification language.

The specification languages that are closer to PVS are those that ac-

company various automated proof checking systems. The closest of these is

EHDM [EHDMg3], which employs a similar higher-order logic with subtyping

and proof obligation generation. EHDM lacks many of the features of PVS:

subtyping is restricted to type declarations and there is no dependent typing.

Higher-order logic is used by other systems such as HOL [GMg3] and

TPS [AMCP84]. Both HOL and TPS employ simply typed higher-order logic

without features such as subtyping, dependent typing, or parametric theories.

Andrews [And86] gives a thorough account of the semantic aspects of higher-

order logic. The formal semantics of the HOL logic are carefully outlined (by

Pitts) in the book by Gordon and Melham [GMg3].

Systems like Coq [DFH+91] and Nuprl [CAB+86] are based on intuitionistic

higher-order logics. Coq allows quantification over types, whereas Nuprl has

quantification over a hierarchy of type universes. Both logics admit dependent

typing. The set-theoretic semantics of dependently typed intuitionistic type

theories has been studied by Dybjer [Dybgl] and Howe [Howgl, How96]. Not

surprisingly, their semantic treatment of dependent typing is similar to the

one given here but they do not delimit the possible dependencies as is done

with the PVS semantics. The PVS semantics presented here clearly specifies

the kind of type dependencies that are disallowed in the logic. Dybjer and

Howe also do not address subtyping but do describe the semantics of language

features missing in PVS (type universes in the case of Howe, and inductive

families in the case of Dybjer). Dybjer does not identify the universe over

which terms and types are interpreted. Howe requires an infinite sequence of

inaccessible cardinals for his universe construction.

1.4 Outline

In Chapter 2, we define the syntax and semantics of the simply typed fragment

of PVS. Type definitions are also introduced in this chapter along with the

definition of definitional equivalence on types. Chapter 3 adds subtyping to

the simply typed fragment and specifies the additional type rules and semantic

definitions that are needed. Chapter 4 extends the language with dependent

function and product types. Theories and parametric theories are introduced

into the language in Chapter 5. The type rules and semantics for conditional

expressions and the logical connectives defined using conditional expressions

8 Chapter 1. Introduction

are introduced in Chapter 6. Chapter 7 specifies the axioms and inference

rules of PVS.

Chapter 2

The Simple Type Theory

PVS is a strongly typed specification language. The simply typed fragment in-

cludes types constructed from the base types by the function and product type

constructions, and expressions constructed from the constants and variables

by means of application, abstraction, and tupling. Expressions are checked

to be well typed under a context, which is a partial function that assigns a

kind (one of TYPE, CONSTANT, or VARIABLE) to each symbol, and a type to

the constant and variable symbols. We use the metavariables F, A, and O

to range over contexts. The metavariables A, B, and T range over PVS type

expressions, the metavariables r and s range over symbols (identifiers), the

metavariables x and y range over PVS variables, and the metavariables a, b,

f, and g range over PVS terms. Given a context F and a symbol s, we say

that F(s) is undefined if s is not declared in F.

The pretypes of the simple type theory include the base types such as bool

and real. A function pretype from domain pretype A to range pretype B is

constructed as [A-+B]. A product pretype of A1, A2 is constructed as [A1, A2].

A type is a pretype that has been typechecked in a given context. Types in

the simple type theory are simple enough that the only distinction between

pretypes and types is that the symbols in a type must be appropriately declared

in the given context.

Example 2.1 (pretypes) bool, real, [bool, real], [[real, bool]-+bool]...

The preterms of the language consist of the constants, variables, pairs,

projections, applications, and abstractions. The metavariables c and d range

over constants. Pairs are of the form (al, a2) where each ai is a preterm.

Applications have the form f a where f and a are preterms. A pair projection

is an expression of the form Pi a, where i E {1, 2}. Lambda abstractions have

10 Chapter 2. The Simple Type Theory

the form A(x: T): a, where T is a pretype and a is a preterm. Parentheses are

used for disambiguation. A term is a preterm that has been typechecked in a

given context.

Example 2.2 (preterms) TRUE, _ TRUE, A (x: bool): _(x),

P2 (TRUE,FALSE), (TRUE,/k (x: bool) : _ (7 x)).

2.1 Contexts

A context is a sequence of declarations, where each declaration is either a

type declaration s : TYPE, a constant declaration c : T where T is a type,

or a variable declaration x : VAR T. Preterms and pretypes are typechecked

with respect to a given context. The empty context is represented as {}. The

well-formedness rules for contexts are presented below. A context can also

be applied as a partial function so that for a symbol s with declaration D,

(F, s: D)(s) = D and (F, s: D)(r) = F(r) for r -¢ s. If s is not declared in F,

then F(s) is undefined. If F is a context, then for any symbol s, the kind of

the symbol s in F is given by kind(F(s)). If the kind of s in F is CONSTANT or

VARIABLE, then the type(F(s)) is the type assigned to s in F.

Example 2.3 (context)

bool: TYPE, TRUE:bool, FALSE:bool, x:VAR [[bool,bool]-+bool]

2.2 Type Rules

The type rules for the simple type theory are given by a recursively defined

partial function T that assigns

1. A type T(F)(a) to a preterm a that is well typed with respect to a context
F.

2. The keyword TYPE as the result of T(F)(A) when A is a well-formed type
under context F.

3. The keyword CONTEXT as the result of T(F)(A) when A is a well-formed

context under context F. The context F is empty for the simply typed

fragment so that typechecking is always invoked as T0(F).

Otherwise, r is undefined in the case of an ill-typed preterm or an ill-formed

type or context.

2.2. Type Rules 11

The type rules are given by the recursive definition for z. Typechecking

in PVS assigns a "canonical" type to a preterm. Customarily, type rules are

presented as inference rules, but a functional presentation is more appropriate

for PVS since

. The type assignment is deterministic. A term can, in general, though

not in the simply typed fragment, be assigned a number of types but it

always has at most one canonical type.

. The soundness proof need only show that the meaning of the term is an

element of the meaning of its canonical type. Thus, only the canonical

type derivation for a term has to be shown sound and not every valid

type derivation.

. The meaning of a term is therefore given by recursion on the term itself

and not on its typing derivation. There is no need to show separately that

this meaning is coherent, that is, independent of the typing derivation.

A functional presentation of the type rules also leads to natural and straight-

forward soundness arguments. Note that the well-formedness rules for contexts

and types are trivial in the simply typed situation but become more mean-

ingful when the type theory is extended. Note also that in the type rules for

expressions and types, the well-formedness of the relevant context is not ex-

plicitly checked. These rules do preserve the well-formedness of the context in

each recursive call so that if the initial context is well formed, then so is every

intermediate one.

Definition 2.4 (type rules)

T0(F,s: TYPE)

c:T)

x:VART)

----CONTEXT

= CONTEXT, ifr(s) is undefined

and T0(F) = CONTEXT

= CONTEXT, if F(c) is undefined,

_-(r)(T) = TYPE,

and T0(F) : CONTEXT

: CONTEXT, if F(x) is undefined,

_-(r)(T) = TYPE,

and T0(F) : CONTEXT

----TYPE, if kind(r(s)) = TYPE

----TYPE, ifT(F)(A) --T(F)(B) --TYPE

12 Chapter 2. The Simple Type Theory

v(r)([A1,A2])

v(r)(f a)
v(r)(A(x:T):a)

a2))
 (r)(pi a)

---- TYPE, if T(F)(A 0 = TYPE for 1 < i < 2

= type(r(s)),
if kind(r(s)) • [CONSTANT, VARIABLE}

= B, i/T(F)(f) = [A-+B] and T(F)(a) = d

= [T--+T(F,x:VAR T)(a)], ifF(x) is undefined

and _(r)(T)= TYPE

=
= Ti, where

(r)(a)= [T,T2]

In the type rule for lambda abstraction, the constraint that F(x) must be

undefined can be satisfied by suitably renaming the bound variable since we

treat terms as equivalent modulo the renaming of bound variables.

Example 2.5 (type rules)

FALSE : boo1

Let Q label the context bool : TYPE, TRUE : bool,

T0({}) = CONTEXT

T0(Q) = CONTEXT

T(Q)([[bool,bool]-+bool]) = TYPE

T(Q)((TRUE, FALSE)) = [bool,bool]

T(Q)(p2(TRUE, FALSE))= bool

T(_)(A(x :Dool):TRUE) = [bool-+bool]

2.3 Semantics

Recall that a preterm a with a type assigned by T under context F is said to be

a term of type w(F)(a) in the context F. If 7 is an assignment for the symbols

declared in context F, the semantics of the simple type theory of PVS is given

by mapping a type T to a (possibly empty) set A/f (F I 7) (T), and a term a with

assigned type T to an element of the set A/f(F I 7)(T) in the basic universe

U. The assignment 7 is a list of bindings of the form {s_ +-- t_}... {s_ +-- t_}.

The application of an assignment 7 to a symbol s is such that 7{s +-- t}(s) is

t, whereas 7{r +-- t}(s) is 7(s) when r _ s.

2.3. Semantics 13

The meaning function AA returns the meaning of a well-formed type A

and a well-formed expression a in the context F under an assignment _ as

AA(F I 7)(A) and AA(F I 7)(a),respectively. The meanings of type names,

constants, and variables declared in F are obtained from the assignment 7.

A function type is mapped to the corresponding function space. A product

type is mapped to the corresponding Cartesian product. An application

term is interpreted by means of set-theoretic function application. A lambda

abstraction yields the graph of the corresponding function. A pair expression

is mapped to the corresponding set-theoretic ordered pair.

Definition 2.6 (meaning function)

M(rlz)(s)

M(r] 7)([A--+B])

M(r] 7)([T1,T2])

M(P] 7)(f a)

M(r I 7)(A(x: T): a)

AA(F] 7)((al,a2))
M(r] _)(pi a)

= z(s),
if kind(F(s)) • {TYPE, CONSTANT, VARIABLE}

= M(r I_)(B):_I_,_IIAI
= M(r I_)(_1)× M(r I_)(_2)
= (M(rI_)(/))(M(rI_)(a))
= {<Y,_>I Y •M(r I_)(_),

_= M(r,x: VAR_l_{x _- y})(a)}
= <M(r I z)(a_),M(r Iz)(a2)>
= ti, whereM(r I_)(a)= <t_,t_>

Example 2.7 (meaning function) Let co be an assignment for the context

in Example 2.5, of the form

{bool +--2}{TRUE +--1}{FALSE +--O}

then

M(f_l_)([bool, bool]) = 2×2

M(f_]_)((TRUE, FALSE)) = (1,0)

AA(_lw)(A(x:bool):TRUE) = {(0,1),(1,1)}

Definition 2.8 (satisfaction) A context assignment _ is said to satisfy a

context F (in symbols _ _ F) iff

1 z(bool)= 2,

14 Chapter 2. The Simple Type Theory

2. 7(TRUE)= I,

3. 7(FALSE) = O,

3._(s)• U wheneverkind(F(s))=TYPE, and

5. 7(s) • M(r i T)(type(r(s)))
whenever kind(r(s)) • {CONSTANT,VARIABLE}.

Example 2.9 (satisfaction)

1. The assignment _ satisfies context ft.

2. The assignment _v{one +-- 1}{zero +-- 0} satisfies the context

ft, one: TYPE, zero: one.

We need one useful proposition that asserts that typing judgements are
not invalidated when the context is extended.

Proposition 2.10 If T0(F) = T0(F') = CONTEXT and F is a prefix of F',

then for all pretypes A, T(F)(A) = TYPE implies T(F')(A) = TYPE, and for all

preterms a, T(F)(a) = d implies T(F')(a) = d.

The following theorems follow from the induction suggested by the defini-

tions of T and A/I. The first of these is straightforward and is given without

proof.

Theorem 2.11 (type construction) If T0(F) = CONTEXT and v(r)(a) =

A, then T(F)(A)= TYPE.

Theorem 2.12 (type soundness) If T0(F) = CONTEXT,7 satisfiesF, and
ffr)(A) = TYPE,then M(r] _)(A) • U.

Proof. The proof is by induction on the structure of the pretype A. Recall

that if X • U, then for some i, X • Ui. This yields three cases:

1. A - s: By Definition 2.4, C(s) is defined and kind(C(s)) is TYPE. Then

by Definition 2.6, A/I(F I 7)(s) is 7(s), and by Definition 2.8, 7(s) • U.

2.3. Semantics 15

. A = [B-+C]: We then have that T(F)(B) = T(F)(C) = TYPE. Letting X

label M(F] "y)(B), and Y label M(F] "y)(C), we have by the induction

hypothesis that X E U and Y E U. Let j be the least rank such

that M(F] -y)(B) • Uj and M(F] "y)(C) • Uj. By Definition 2.6,

M(F] v)(d) = yX, and hence M(F] v)(A) • Uj+I by Definition 1.1.

. A = [A1, A2]: Again by Definition 2.4 and the induction hypothesis, we

have for each i • {1,2}, that M(F] 7)(Ai) • U. Let j be the least rank

such that for i • {1,2}, M(F] 7)(Ai) • Uy. Then, it is easy to verify

from Definition 1.1 that M(F] 7)(A) • Uy+I.

Theorem 2.13 (term soundness) If T0(F) = CONTEXT, _y satisfies F, and

r(F)(a) is defined and equal to A, then M(F] 7)(a) • M(F] 7)(d).

Proof. The proof is by induction on the structure of preterms.

1. a = s: By Definition 2.4, we have that type(F(s)) = A. By Definitions 2.6

and 2.8, we have that M(F I T)(a) = T(s) and T(s) • M(F I T)(A) •

. a = (f b)" By Definition 2.4, r(r)(f) = [B-+A], and r(F)(b) = B,

for some B such that T(F)(B) = TYPE. Let M(F [7)(d) be X and

M(F [7)(B) be Y, then by Definitions 2.4 and 2.6, and the induc-

tion hypothesis, we have M(F I _y)(f) • X y and M(F I _y)(b) •

Y. It therefore follows by Definition 2.6 that M(F] 7)((f b)) =

(M(r I z)(;))(M(r I _)(_)), and hence M(F] _y)((f b)) • X.

. a = (A(x:C):b): By Definition2.4, we have that r(F)(a) is [C--+B],
where T(F,x:VARC)(b)is B. Let X be M(F] _y)(C),and Y be
M(F,x:VAR C] 7{x +-- u}))(B). By the inductionhypothesis,we
have that for any u • Y, M(F,x:VAR C]7{x +--u})(b) • X. Since
M(F] _y)(a)is {(u,v)]u • X,v = M(F,x:VARC]_y{x +--u})(b)}, we
havethat M(F]7)(a) • X v.

. a -- (al,a2): By Definition2.4, r(C)(a) = [A1,A2],wherer(C)(a_)=
Ai for i • {1,2}. By the induction hypothesis,M(F] T)(ai) •
M(F] T)(Ai) for i • {1,2}. By Definition2.6, M(F] T)(a) --
(M(F]7)(al),M(F]7)(a2)) and henceM(F] 7)(a) is an element
ofM(F I-y)(A)whichis M(F I-y)(A)x M(F I-y)(A_).

16 Chapter 2. The Simple Type Theory

5. a -- Pi b:In this case,weknowby Definition2.4that T(C)(b)= [A1,A2]
with i E {1,2}, and T(F)(a) = Ai. By the induction hypothesis,
AA(F I 7)(b) = (tl,t2), and by Definition2.6, AA(F I 7)(a) = ti and
M(r IV)(_(r)(b))= M(r I_)(A1)×M(r I_)(A2),henceA/I(F]7)(a) E

M(r I_)(A3.

These three theorems (2.11, 2.12, and 2.13) are the key invariants that

must be satisfied by the semantics when the language is extended below with

type definitions, subtypes, dependent types, and parametric theories.

2.4 Some Syntactic Operations

We first define the operation of collecting the free variables of a term a in a

given context F as FV(F)(a), and then define the operation of substitution.

Definition 2.14 (free variables)

FV(r)(s)

FV(r)(f a)

FV(F)(A(x:T):a)

FV(F)((al,a2))

FV(r)(pi a)

{s}, if kind(r(s))= VARIABLE= 0, otherwise

= Fv(r)(f) o Fv(r)(a)

= Fv(r,x: VART)(a) - {x}

= Fv(r)(al) O Fv(r)(a2)

= Fv(r)(a)

Definition 2.15 (substitution)

sial/x1,...,a_/x_] --

(f a)[al/Xl,...,a_/x_] =

(A(y:T):a)[al/Xl,...,a_/x_] =

(bl,M[al/Xl,...,a_/x4 =

(Pi a)[al/Xl, . . . , an/Xn] =

{ ai, if for some minimali, s-- xis, otherwise

(f[al/Xl, . . . , an/Xn]

a[al/Xl,...,a_/x_])

(A(y': T): a[y'/y, al/Xl,. . . ,a_/x_]),

where yl is a fresh variable

(bl[al/Xl, . . . , an/xn],

b2[al/Xl, . . . , an/Xn])

(Pi a[al/Xl, . . . , a_/x_])

2.5. Type Definitions 17

Recall that terms are treated as syntactically equivalent modulo alpha

conversion. The above definitions must be extended as more features are

added to the language.

2.5 Type Definitions

Here we enrich contexts so that type symbols may have definitions. PVS does

not allow recursive type definitions 1 so a type declaration/definition in a con-

text may use only the symbols declared in the prior part of the context. The

main difference in the extended language is that type names can have deft-

nitions. In such cases, the definitions rather than the type names are used

to determine the actual type of an expression. In other words, two type ex-

pressions are treated as the same if they are definitionally equivalent. Most

other specification languages tend to employ the weaker notion of name equiv-

alence where syntactically different types are treated as distinct even when

their definitions coincide.

To accommodate type definitions, a context can contain type declarations

of the form s : TYPE = T, where T is a type. If context F contains such

a declaration for s, then definition(F(s)) is T. To extend _- to handle type

definitions under definitional equivalence, we must ensure that _- returns the

canonical form of a type where all defined types have been replaced by their

definitions. The operation 5(F) (T) returns the expanded form of a type relative
to the context F.

Definition 2.16 (expanded type)

5(F)(s) = s, if definition(F(s)) is empty

5(F)(s) = 5(F)(definition(F(s))), if definition(F(s)) is nonempty

=

5(r)([T1,T2]) =

The typing rules are augmented to return the type in expanded form. The

main issue here is to determine that the definition part of a type declaration

in a context is well formed relative to the preceding context. We also need

to ensure that _- returns the expanded form of the type corresponding to a

preterm.

1For the moment, we are not considering the PVS DATATYPEmechanism, which is a form

of recursive type definition [OS97]. Recursive datatypes in the context of the HOL proof
checking system are described by Melham [Mel89].

18 Chapter 2. The Simple Type Theory

Definition 2.17 (type rules with type definitions)

T0(F ,s: TYPE = T) = CONTEXT, /f F(s) is undefined,

T0(F) = CONTEXT,

and = TYPE
=

if kind(F(s)) • {CONSTANT, VARIABLE}

Note that the 5 operator is idempotent, and ffF)(a) for a term a always

returns an expanded type, that is, 5(T(r)(a)) = fir)(@.

We do not need to update the definition of 34 from Definition 2.6 since

the syntax for terms is unchanged, but we do need to revise the notion of a

satisfying context assignment (from Definition 2.8) to respect the type defini-

tions.

Definition 2.18 (satisfaction with type definitions) An assignment 7

satisfies a context F if in addition to the conditions in Definition 2.8, whenever

kind(F(s)) = TYPE and definition(F(s)) (abbreviated as T) is nonempty, then

7(s) = 34(F I 7)(T). ..

Theorems 2.11 and 2.12 and 2.13 continue to hold under these extensions,

and the proofs are easily adapted to the modified definitions.

Example 2.19 (type definition) Let fY be the context

_, boolop: TYPE = [[bool, bool]-+bool], V: boolop. Then

T0(fY) = CONTEXT

= [[boo ,booq-- booq,
= [[bool,booq booq

2.6 Summary

We have defined the simply typed fragment of PVS by introducing the syn-

tax for pretypes and preterms, the type rules and semantics for well-formed

contexts, types, and terms. The type rules are presented in a novel functional

style where each well-formed context is assigned the label CONTEXT, each well-

formed type is assigned the label TYPE, and each well-formed term is assigned

2.6. Summary 19

a canonical type. The semantics takes a satisfying assignment for a context

and maps a well-formed type to a set and a well-formed term to an element

of the set corresponding to its canonical type. We then defined the syntactic

operations of collecting the free variables in an expression and for substituting

terms for variables in an expression.

The simple type theory is then extended with type definitions. With this

extension, two type expressions are treated as equivalent if they are identical

after all type definitions have been expanded. The operation d returns the

expanded form of a given type expression.

Chapter 3

Adding Subtypes

Subtyping is one of the main features of the PVS specification language. 1 Sub-

typing in PVS corresponds to the set-theoretic notion of a subset. It raises

several delicate issues that were absent in the language presented thus far. In

the simply typed fragment, each type corresponds to a set of values that is

somehow structurally different from the set of values for another type so that

a term has at most one type. Subtyping makes it possible to introduce the

natural numbers as a subtype of the reals, and to treat the primes, the even

numbers, and the odd numbers as subtypes of the natural numbers. With

subtyping, a term can obviously have several possible types, but the type-

checking function w may return only a single type. We constrain w to return

a natural canonical type of an expression that is given by the declarations of

the symbols in the expression. If the expression is used in a context where

the expected type is a supertype of its canonical type, then the type correct-

ness is straightforward. If the expected type is a subtype that is compatible

with the canonical type of the expression, then typechecking generates proof

obligations asserting that the expression satisfies the predicate constraints ira-

posed by the expected type. Two types are compatible if they have equivalent

maximal supertypes. Type equivalence in the presence of subtypes is not a

simple notion. Subtyping also introduces the possibility of types being empty.

Typed lambda calculi with possibly empty types have been studied by Meyer,

Mitchell, Moggi, and Statman [MMMS90]. This chapter introduces predicate

subtypes and defines the notions of compatibility and type equivalence prior

to presenting the type rules and semantics.
We restrict our attention to contexts F that extend the declarations:

bool : TYPE,

1The form of subtyping used in PVS is derived from a suggestion of Friedrich von Henke.

20

21

TRUE : bool,

FALSE : bool,

boolop :

V

A

[[bool, bool]-+bool],

: [bool-+bool],

: boolop,

: boolop,

: boolop

We will abuse PVS notation to employ the customary infix forms of operations

like V, A, and D. The pretype corresponding to a predicate subtype has the

form {x:T I a} where x is a symbol, T is a pretype, and a is a preterm.

A predicate type in PVS is a function type where the range is the primitive

type bool. A predicate is a term that has a predicate type. If a is a term

of type bool, then we can define the subtype {x: T I a} consisting of those

elements e of T satisfying ale�x] (e substituted for x in a). Since the elements

of the subtype {x: T I a} satisfy the predicate _(x: T): a, we call this type a

predicate subtype to distinguish it from other forms of subtyping. Universal

quantification V(x: T):a is just an abbreviation for the term (A(x: T):a) =

(A(x: T): TRUE). Although we use the equality predicate in the definition of

universal quantification and in the definitions below, the actual introduction

of equality is deferred to a later section following the introduction of parametric

theories. The equality between PVS terms of function type is to be interpreted

as extensional equality. Note that the '=' symbol is used both for the formal

equality symbol in the language and for metatheoretic equality.

Our first step will be to define the notion of a maximal supertype of a given

type as #(T). A maximal type T is one such that #(T) = T. In a given context,

we will apply # only to the expanded form (given by 6) of a type expression.

Definition 3.1 (maximal supertype)

=
#({x:Tla}) = #(T)

#([A-+B]) = [A-+p(B)]
#([A1,A2]) = [#(A1),p(A2)]

Note that since subtypes correspond to subsets, in taking the maximal super-

type of a function type, the domain type is held fixed. In most type theo-

ries with subtypes, the rule for subtyping between function types [A--+B] and

[AI--_B I] requires showing that A I is a subtype of A, and B is a subtype of B _.

22 Chapter 3. Adding Subtypes

Subtyping between function types is therefore said to be contravariant in the

domain type and covariant in the range type. Subtyping on function types in

PVS is covariant in the range type but is neither covariant nor contravariant

in the domain type. This means that the function type [nat--+nat] is not a

supertype of the function type [int-+nat]. Such a subtyping relation would

violate extensionality. Two functions on nat are extensionally equal when

they return equal values when applied to equal arguments in nat. Consider

two functions in [nat--+nat]: abs which returns the absolute value, and idnat

which behaves as an identity function on natural numbers and returns 0 other-

wise. These two functions will be erroneously identified if they can be viewed

as being of type [nat--+nat], and the subset interpretation of subtypes would
be lost.

We will also employ a weaker supertype #0(T) or the direct supertype, that

only considers supertypes of explicitly given subtypes of the form {x: T] a}.

Definition 3.2 (direct supertype)

#0({x:T]a}) = #o(T)

#o(T) = T, otherwise

Example 3.3 (maximal supertype) Given a context containing the decla-

rations

int:TYPE,

O:int,

_<: [lint, int]--+bool],

nat: TYPE = {i: int] 0 _< i}

natinjection: TYPE = {f: [nat--+nat]] V(i,j:nat): f(i)= f(j) D i= j}

we have

#(natinj ection)

/to (nat inj e ct i on)

---- #([nat--+nat])

----[nat--+p(nat)]

----[nat-+int]

----[hat-+nat]

Note that #(#(A)) = #(A). Note also that a maximal supertype is never a

subtype. We can in fact collect the predicates that constrain a type A relative

to its maximal supertype #(A) as 7r(A).

23

Definition 3.4 (subtype constraints)

 la})

A2])

= /k(x: s): TRUE

= A(x:p(T)): (Tr(T)(x) A a[x/y])

= A(x: [A--+p(B)]): (V(y: A): 7_(B)(x(y)))

= A(x:[p(dO,p(d2)]):(7_(dO(p_ x)A_(d2)(p2 x))

Observe that in Definition 3.4, if = TYPE, then =

[#(A)--+bool]. 2

Example 3.5 (subtype constraints)

To(nat)

---- /_(j: int): 0 __ j

_([nat-+nat])

----A(g: [nat-+int]):V(i:nat):(A(j:int):0 _<j)(g(@))

_(natinjection)

----/_(f: [nat-+int]):

= A(/: [nat-+int]):

A

7_([nat-+nat]) (f)

A (V(i,j:nat)'f(i) = f(j) _ i = j)

(/_(g: [nat-+int]): V(i: nat): (/_(j: int): 0 __ j)(g(i)))(/)

(V(i,j:nat): f(i) = f(j) _ i = j)

Observe that 7c(#(A)) is essentially equivalent to A(x: #(A)): TRUE.

Since the subtype {x:TIp(x) Aq(x)} can also be written as {x:TIq(x) A

p(x)}, we need a notion of equivalence between types. One way to do this is to

make types "first-class" and to allow explicit theorems to be proved about type

equivalence and subtyping. Since this would be a fairly drastic extension to the

specification language, we have designed the PVS type system so as to avoid

2This is somewhat tricky in the case of rc({y:T [a}) since in a[x/y], x has type
p(T), whereas y has type T. As shown in Chapter 6, the type rules for conjunc-
tion are such that 7(F,x:VAR #(T))(7_(T)(x) A a) reduces to 7(F,x: VAR #(T))(7_(T)(x))
and v(F,x:VAR #(T),r_(T)(x))(a[x/y]) where the first conjunct is added to the
context as a contextual assumption. One can then show by induction that
T(r, x: ,(T), 7_(T)(x))(a[x/y]) = T(r, y:vA_ T)(a).

24 Chapter 3. Adding Subtypes

any first-class treatment of types. It turns out that all the needed properties

about types (such as equality and subtyping) can be obtained by generating

ordinary proof obligations rather than by explicitly proving theorems about

types.

We introduce below a metatheoretic operation that generates the proof

obligations needed to establish that two (maximal) types are equivalent. This

equivalence is denoted by -_ and is applied only to maximal types and re-

turns a list of the proof obligations that must be proved. Note the invariant

in the definition below that the arguments to -_ are always maximal. The

definition of -_ makes use of the PVS equality predicate that will be intro-

duced later. A list of formulas is represented as al,..., aN. Given two such

lists al,...,am and bl,...,b_, the concatenation of these two lists is written

as al,...,am ; 51,...,bn.

Definition 3.6 (type equivalence proof obligations)

([A-+B] __ [A'-+B'])

([A1,Ae]-_ [J_l, J_e])

(A__B)

= TRUE

= ((#(A) __ #(A')); (Tr(A) = 7r(A')); (B __ B')) 3

= ((dl -_ B1); (de -_ Be))

= FALSE, otherwise

Example 3.7 (type equivalence) Building on the context given in Exam-

ple 3.3, if we have the following variants of nat and natinjection:

NAT:TYeE= {i: intli _<0 i= 0}
NATinjection:TYPE={f:[NAT---+NAT]]V(i,j'NAT):f(i)=f(j) D i=j}

we get

#([natinj ecti on-+natinj ection]) = [natinj ection-+[nat-+int]]

#([NATinjection-+NATinjection]) = [NATinjection-+[NAT-+int]]

#([natinjection-+natinjection]) _ #([NATinjection-+NATinjection])

= (#(natinjection) _ #(NATinjection));

(Tr(natinjection) = 7r(NATinjection));

([nat-+int] _ [NAT-+int])

3The type correctness of the proof obligation (Tr(A) = 7r(A')) depends on the prior proof

obligations #(A) __ #(X).

25

(7_(natinjection) ----7_(NATinjection))

---- (A(f:[nat-+int]): (A(g:[nat-+int]):V(i:nat):0 < g(i))(f)

A (V(i,j'nat):f(i) = f(j) D i= j)

)_(f: [NAT-+Lnt]):

(A(g:[NAT-+int]):V(i:NAT):g(i) <0 _ g(i)-=O)(f))

A (V(i,j:NAT):f(i)=f(j) D i=j)

([nat-+int] _ [NhT-+int])

-- (int int)i

()_(i:int):0_<i)---- ()_(i:int):i_<0 _ i----0);(int__int)

A basic question during typechecking is whether two types are compatible,

that is, have the same maximal supertype. Two types are said to be com-

patible if the type equivalence proof obligations on their respective maximal

supertypes are provable. The provability of a formula a under context F is

represented as t-r a.

Definition 3.8 (compatible) Two types A and B are said to be compatible

in context F (in notation, (A _ B)r) iff-r a, for each a in (p(A) __ p(B)). 4 •

We now extend the definition of 5 to the case of subtypes so that it leaves

the predicate unchanged but expands the definition of the supertype.

Definition 3.9 (expanded type with subtypes)

5(r)({x:Tla}) = {x:5(r)(T)la}

We now extend the definition _- to the case of subtypes. Here we could force

_- to always return a maximal supertype but this is not done in Definition 3.10

since it would weaken the soundness theorem without significantly simplify-

ing the definition of the type rules. The typechecking of contexts has to be

modified to generate a nonemptiness proof obligation for the type of any con-

stant declaration. A constant of an empty type would lead to an inconsistent

context, and this would mean that constant declarations are not conservative

extensions. This modification to Definition 2.4 is not needed for soundness

since an inconsistent context makes soundness trivial. It is needed to show

4The PVS proof rules are described in Chapter 7.

26 Chapter 3. Adding Subtypes

that constant declarations and definitions are conservative extensions. Note

that with subtypes, the type rule for an application is modified to check that

the domain type of the function is compatible with the type of its argument,

and that the argument satisfies any constraints imposed by the domain type

of the function. The case of projection expressions is also not straightforward

since the argument type can be a subtype of a tuple type. In this case, we use

the direct supertype (see Definition 3.2) which must be a tuple type.

Definition 3.10 (type rules with subtypes)

T0(F,c:T)

T(F)({z:Tla})

_(r)(f a)

T(F)(pi a)

= CONTEXT, /f F(c) is undefined,

T(F)(T) = TYPE,

T0(F) : CONTEXT, and

F-r(3(x: T): TRUE)

= TYPE, if F(x) is undefined,

_(F)(T)= TYPE, and T(F,x: VAR T)(a) = bool

= B, where po(r(r)(f)) = [A+B],

_(r)(a) = d',

(d _ d')r,

t-r 7_(A)(a)

= Ai, where po(_(F)(a))= [A1,A2]

Example 3.11 (typechecking subtypes) Let F contain the above declara-

tions of int, nat, 0, _<, and natinjection.

T(F)({i: ±nt] 0 < i})

----TYPE

T(F) ((A(f: natinj ection): f(O))(A(i: nat): i))

= _(V)(nat), if

(natinjection _ [nat-+nat])r,

_r V(j,k:nat):(A(i:nat):i)(j)= (A(i:nat):i)(k) D j= k,

(int _ nat)r, and

t-r 0_< 0

27

Only one additional clause to Definition 2.6 is needed to capture the se-

mantics of predicate subtypes.

Definition 3.12 (meaning function with subtypes)

M(r Iv)((x: T la})
= {y EM(P]"y)(T)]M(P,x:VART]-y{x +--y})(a)= 1}

Example 3.13 (semantics of predicate subtypes) If we assign the usual

truth table interpretation to the Boolean function D:

M(r l _Y)({f: [bool-->bool] l V(x:bool):x

= {{(0, 0>, (1, 1>}, {(0, 1), (1, 1)}}.

f(x)})

The following useful propositions are easily proved from the definitions

given above. Proposition 3.14 asserts that the maximal supertype of a type is

well typed. Proposition 3.15 asserts that the denotation of a type is a subset

of the denotation of its maximal supertype. Proposition 3.16 asserts that if

all the proof obligations in (A __ A') are valid relative to a given assignment

'7 for context F, then the denotations of A and A' under '7 are equal.

Proposition 3.14 If rOW) = CONTEXTand r(r)(A) = TYPE, then

r(F)(p(A)) = TYPE.

Proposition 3.15 Ifr()(P) = CONTEXT, r(P)(A) = TYPE, and "y satisfies F,

then

1. M(r] n)(A) c_M(r] n)(p(A)) and

2. M(r I n)(A) c_M(r I n)(p0(A)).

Proposition 3.16 IrA and A' are maximal types in context F, i.e.,

i. T0(F) = CONTEXT,

2. r(r)(A) = r(r)(A') = TYPE,

3. p(A) = A and p(A') = A'

and for each a in (A __ A'),

28 Chapter 3. Adding Subtypes

1. a _ TRUE, or

2. a -- (al = a2) and M(F] 7)(al) = M(F] 7)(a2) holds,

then M(F] 7)(A)= M(F] 7)(A'). 5

Proposition3.17IfT0(F) = CONTEXTandz(F)(T)= TYPE,then
M(r I '7)(T)= M(r I '7)(ix:#(T) IT_(T)(x)}).

We can now examine the updated forms of the invariants given by Theo-

rems 2.11, 2.12, and 2.13. The proof of Theorem 2.11 remains straightforward.

The statement of Theorem 2.13 must now be strengthened to include sound-

ness, that is, if t-r a and '7 satisfies F, then M(F] '7)(a) -- 1. For now, we

assume soundness (Theorem 7.2) since we have not yet presented the proof
rules.

Theorem 3.18 (type soundness) If T0(F) = CONTEXT,'7 satisfiesF, and
_(r)(A) = TYPEthenM(r] '7)(A)• U.

Proof. There is only one new case to add to the induction proof of The-

orem 2.12, namely, when A = {x:T] a}. In this case, by Definition 3.10,

T(F)(T) = TYPE, so by the induction hypothesis, M(F] '7)(T) • U. Since, by

Definition 3.12, M(F] '7)(A) C_ M(F] '7)(T), we have M(F] '7)(A) • U by
Definition 1.1. ..

Theorem 3.19 (term soundness) If T0(F) = CONTEXT, "7 satisfies F, and

_(r)(a) = A then M(F] '7)(a) • M(F] '7)(A).

Proof. There are two affected cases in the proof from that of Theorem 2.13,

namely, those of application and projection. The case of projection expressions

is straightforward given Proposition 3.15.

When a -- (f b), by Definition 3.10, we have that T(P)(f) = [B--+A]

and T(F)(b) = B'. Let X be M (F I '7) (B) , X'beM(FI'7)(B'), and Y be

M(F I '7)(A). Then by Definition 2.6, M(F I '7)([B-+A]) = yX. By the induc-

tion hypotheses, M(F I '7)(f) • yX and M(F I '7)(b) • X'. By Definition 3.10,

soundness of the proof rules (Theorem 7.2), and Propositions 3.15 and 3.16,

there is a maximal supertype p(B) of both B and B I such that X and X I are

both subsets of M(F I '7)(p(B)). Since, by Definition 3.10, t-r 7_(B)(b), and

by Proposition 3.17, M(F I '7)(B) = M(F I '7)({x: p(B) I 7_(B)(x)}), we have

M(F I '7)(b) • M(F I '7)(B), and hence by Definition 2.6, M(F I '7)((f b)) •

M(r I '7)(A).

5We remind the reader that the formulas a in (A __A t) are equalities, but we have not

yet formally introduced equality into the language.

3.1. Summary 29

3.1 Summary

PVS features a form of subtyping where it is possible to form the subtype

of a type satisfying a given predicate on the type. This kind of subtyping

introduces several delicate semantic issues into PVS. A term can now have

several types since, for example, the term corresponding to the number 2 can

be a prime number, an even number, a natural number, an integer, a rational

number, or a real number. When the expected type is a subtype, the canonical

type of the actual term must be compatible with the expected type, that is,

the two maximal supertypes must be equivalent and the actual term must sat-

isfy any subtype constraints imposed by the expected type. We have defined

the notions of maximal supertype, subtype constraints, type equivalence, and

compatibility. These notions are used to define the type rules and semantics

of the simply typed fragment of PVS extended with subtypes. Note that both

type equivalence (and hence, compatibility) and type correctness are undecid-

able. Proof obligations generated during typechecking are the only source of

such undecidability. The modularization of the type system into a decidable

part consisting of the simply typed fragment, and the proof obligations gener-

ated by subtyping, is perhaps the most significant design consideration in the

PVS language.

Chapter 4

Dependent Types

The PVS language fragment described thus far is already quite expressive. It

employs definitional equivalence between types and contains predicate sub-

types. It is undecidable whether an expression in this fragment is type-correct

because of the proof obligations that arise with respect to predicate subtypes

and type equivalence. The next step is the addition of type dependencies

between the components of a type. This extension considerably enhances the

utility of this type system. It is also a natural extension given predicate subtyp-

ing which already allows types that depend on free variables in the predicates.

With dependent typing, we can make the type of one component of a prod-

uct depend on the value of another component, or the type of the range of a

function vary according to its argument value.

A dependent product type is written as Ix: A,B]. A dependent function

type is written as Ix: A-+B]. Any product or function type can be transformed

into a dependent type by inserting dummy type bindings. Conversely, any

dummy type bindings that do not actually bind any variable occurrences can

be removed. The type rules and semantics below will assume that all product

and function types are presented as dependent types.

Example 4.1 (dependent types)

[i:nat, {j:nat I J -< i}],

[i: nat, [{j: nat I J -< i}-+bool]],

[i: int-+{j: int I i < j}].

Before we treat dependent types, we update the definitions of the set of

free variables and substitution to account for the fact that with subtyping and

30

31

dependenttyping, both freeand boundvariablescanoccur in terms andtypes.
This is neededfor the next stepwherewe try to removetype dependenciesby
substituting a term into a dependenttype.

Definition 4.2 (free variables for types)

FV(F)([x: A_B]) = Fv(r)(A) u (fv(r,x: VAR A)(B) - {x})

FV(F)([x:A,B]) = FV(F)(A)U(FV(F,x:VtR A)(B)-{x})

fV(F)({x: A] a}) = rv(r)(A) u (rv(r,x: VAR A)(a) - {x})

Definition 4.3 (substitution for types)

[z: A--+ B][al /zl, . . . , a_/z_]

= [y:A[al/zl,...,a_/z_]----_B[y/z, al/z_,...,a_/z_]]

[x: A, B][al/xl, . . . , a_/x_]

= [y:A[al/xl,...,a_/x_],B[y/x, al/xl,...,a_/x_]]

{z:A I a}[a_/z_,...,a_/z_]

= {y:A[al/xl,...,a_/x_] I a[y/x, al/x_,...,a_/x_]}

where y is a fresh variable.

The definition of # has to be modified slightly for dependent types.

The definition is first extended to type bindings, #(x:T) = x:p(T). The

definition for the case of dependent function types is unchanged so that

#([x:A--+B]) = [x:A--+p(B)]. The definition for the product case is more

delicate since the definition #([x: A,B]) = [x: #(A),p(B)] results in a loss of

type information regarding the occurrences of x in B. _ To ensure that type

information regarding x is retained, we define a new operation T\a which

constrains the subtype assertions in type T with an additional assertion a.

Definition 4.4 (Adding subtype constraints)

8\a _ 8

{x:TIb}\a = {x:TlaA b}

[A--+B]\a = [A\a--+B\a]

[A,B]\a = [A\a,B\a]

1Doug Howe brought this problem to our attention.

32 Chapter 4. Dependent Types

We can now define the maximal supertype operation for dependent tuple

types.

Definition 4.5 (Maximal supertype for dependent product types)

#([x:A,B]) = [x:p(A),B_r(A)(x)]

The definition of 7c for a dependent function type [y: A-+B] is slightly

different from that of an ordinary function type since 7c(B) can contain free

occurrences of the variable y. For example, 7c([i: ±nt-+{j: ±nt I i _< j}]) must

be A(f: [i: int-+int]): (V(i: int): i _< f(i)). The definition for dependent tuples

remains essentially unchanged from that of ordinary products.

Definition 4.6 (constraint predicates for dependent types)

_r([y: A_B]) =

_r([y: A, B]) =

(A(x: [y: A_p(B)]): (V(y: A): _r(B)(x(y))))

(A(x: [y: #(A), #(B)_r(A)(y)]):

7r(A)(pl x) A 7r(/3)(p2 x)[(pl x)/y])

Example 4.7 (dependent type predicates)

#([i: int--+{j: int] i __ j}]) =

7r([i: int--+{j: int] i __ j}]) =

[i: int-+int]

A(f: [i: int-+int]):

V(i: int): (A(j: int): i < j)(f(i))

The definition of -_ must also be massaged slightly for dependent types.

Recall that __ checks whether two maximal types are equivalent by generating

proof obligations as needed. This is the basic operation for checking whether

the expected type of an expression is compatible with its actual type. The sub-

tlety now is that the expected type might be a dependent type where the actual

type is not. Consider the case of the pair (5, (A(x: {j:nat]j _< 5}):x)) whose

type would be computed by T as [/:nat, [{j:nat]J -< 5}--+{j:nat]J -< 5}]]

where the expected type might be [i: nat, [{j: nat]J -< i}_{J: nat]J -< i}]].

To cope with this, we will allow the option of two maximal types, say A and

B, to be compared using __ in the context of an expression a. This is indicated

33

by the notation (A __B)/a. Note that (A __ B)/a is sensible only when A and

B are maximal types. The missing cases in Definition 3.6 are included in Def-

inition 4.8. For a list of formulas al,..., a,, let (V(x: T): al,..., a,) represent

the list (V(x:T):al),..., (V(x: T): a,). 2

Definition 4.8 (type equivalence for dependent types)

([x:A--+B] [x':A'--+B'])

([x: A--+B] __ [x': A'--+B'])/a

([x: A1, A2] -_ [y: gl, g2])

([x: A1, A2] "_ [y: gl, g2]) /a

(A__B)/a

= TRUE

= (It(A) _- #(A'));

(_(d) = _(d'));

(V(x: d): (B __ B'[x/x']))

= (It(A) _- #(d'));

(_(d) = _(d'));

(V(x: d): (B __ B'[x/x'])/a(x))

= (A1 -_ B1);

(V(x: A1): (A2 _- B2[x/y]))

= (dl _ gl)/(pl a);

(A2[(pl a)/x] _-- g2[(pl a)/y])/(p2 a)

= FALSE, otherwise.

As with (A _ B)r, the notation (A L B)r indicates that all the proof obliga-

tions a' in (p(A) __ p(B))/a are provable, that is, k-r a'.

With dependent types, the type rules must be modified so as to augment

the context suitably to account for any dependencies. We will give the defini-

tions only for dependent type constructions.

Definition 4.9 (type rules with dependent types)

r(r)([x:A,B]) = TYPE, ifr(x) is undefined,

r(r)(d) = TYPE, and

r(F,x:VAR A)(B)= TYPE

r(F)([x:A-+B]) = TYPE, if F(x) is undefined,

r(r)(d) = TYPE, and

r(F,x:VAR A)(B)= TYPE

2Note that the type-correctness of the proof obligation (_(A) -- 7_(A')) in Definition 4.8

depends on the prior proof obligations #(A) __ #(At).

34 Chapter 4. Dependent Types

a)

T(C)(pla)
v(r)(p2 a)

= B', where po@(F)(f))= [x:A-+B],

T(F)(a) = A',

(d L d')r,

B' is B[a/x],
_-r _(d)(a)

= [x:A-+B], where

B = T(F,x: VAR d)(a)

= dl, where #o(T(F)(a))= [x:dl,d2]

= d2[(pl a)/x], where #o(T(F)(a)) = [x:dl,d2]

Example 4.10 (dependent typing)

T(F)([x:bool,{y:boollxDy}]) = TYPE

f(F)([x:bool--+{y:boollx D y}]) = TYPE

Before we can assign meanings to dependent types, we must augment our def-

inition of the universe U to contain sets corresponding to these constructions.

If F is a function with domain set X and a range Y, which is a set of sets, we

can define EF to be the set {(x,y}]x E dom(F),y E F(x)} and IIF to be the

set {fl(Vx E dora(F): f(x) E F(x))}. Note that IIF C_ Ux_,F_(X) but we

include IIF in the universe U defined below for simplicity. We can drop X x Y

and X Y from the universe definition since X x Y can be obtained from EF by

defining an F with domain X that always returns Y, and similarly, X Y can

be obtained by IIF where F is defined to with domain Y to always return X.

The universe U can then be redefined as below.

Definition 4.11 (type universe with dependent types)

u0

Vi+l

= {2, R}

= u_

u U s(x)
X6U_

u {EFI F • Wi}

35

u {nFI F • WJ

= Uv?
xcu_

u_ = Uu_
icw

U = U_

One very important consequence of the above extension of the universe is

that all type dependencies must be bounded in the sense that if B is a type

expression with a single free variable z of type A, then it must be the case that

for any set [A 1 representing A, there is a bound n such that for any z in [AI,

the meaning of B under {z +-- z} must be in U,. This property is easily proved

by induction on the structure of a PVS type since the parameter z can appear

only in the predicate part of a subtype where the rank of the meaning of the

resulting type cannot vary with the value of z. In particular, there is no way

to define a type constructor T" in PVS that returns the n-tuple [T, [..., T]]

n

for a given n since this would entail an unbounded dependency. If unbounded

type dependencies were allowed in PVS, one can construct a dependent type

such as [n: nat----_T _] whose representation is not in U as defined above.

The meaning function for dependent types is obtained by adding the cases

corresponding to dependent product and function types. All the other cases

are unchanged from Definition 3.12. Note that the semantic definition for

dependent types is equivalent to the nondependent one when there are no

dependencies.

Definition 4.12 (meaning function with dependent types)

M(F I _)([x:A,B])

M(F I _)([x: A+B])

= EF, where

F maps _ • M(r I z)(A) to

M(r,x: VARA lo,{x +-- z})(B)

= IIF, where

F maps z • M(F I 7)(A) to

M(r,x: VARA lo,{x +-- z})(B)

36 Chapter 4. Dependent Types

Example 4.13 (meaning function with dependent types)

M(r Iz)([x:bool, {y:bool Ix y}]) =
M(r IZ)([x:bool+{y:bool ix y}]) =

{(0, 0>, (0, 1), (1, 1)}

{{(0, 0>, (1, 1)},

{(0, 1), (1, 1)}}

We now need to show that the extensions corresponding to dependent types

preserve the properties in Theorems 3.18 and 3.19, namely, A//(F I 7)(T) • U

and A//(F I _y)(a) • A//(F I _y)(r(F)(a)). For the former, we prove a stronger

theorem that incorporates the rank-boundedness of dependent types.

Theorem 4.14 (rank bounded type semantics) If B is a pretype,

xl,...,xn is a list of symbols, AI,...,An is a list of pretypes such that

1. r0(F, xl:VAR A1,...,xn:VAR An) = CONTEXT,

2. T(F, xl:VAR A1,...,xn:VAR An)(B) = TYPE, and

3. % is an assignment satisfying F,

then there is an i such that for any list of values zl,..., zn where %{xl +---

zl}... {xn +-- zn} is a satisfying assignment for F, xl: VAR Al,..., xn: VAR An,
we have

A/t(F, Xl: VAR A1,...,xn:VAR An I _y{Xl +-- z1}... {Xn _ Zn})(N) • Ui.

Proof. The proof is by structural induction on the pretype N. Let F' denote

F, xl:VAR Al,...,xn:VtR An, _' denote 7{xl +-- zl}...{xn +-- zn}, and [C 1

denote A//(F' I 7')(C).

1. B = s: Since IN] is just 7(B) by Definition 2.6, we have that there is

an i such that IN] • Ui regardless of the choice of values zl,..., zn.

. N -- {y: T I a}: By the induction hypothesis, we know that for some j,

it is always the case that ITI • Uj. By Definition 3.12, we have that

IN 1 C_ IT 1 so if we let i= j + 1, then by Definition 4.11, it is always the

case that IN 1 • Ui.

37

. B -- [y:C-+D]: By Definition 4.9, r'(y)is undefined, 7(F')(C) =

TYPE, T()(r',y:VAR C) = CONTEXT, and T(r',y:VAR C)(D) = TYPE.

By the induction hypothesis, for some j, it is always the case that

A//(F' I 7')(C) E Uj, and for some k, it is always the case that

for any satisfying assignment 7'{Y +-- w} for F',y:VAR C, we have

A//(F', y: CAR C IT'{y +- w})(D) E Uk. Then the function F mapping w

in A//(F')(C) to A//(F', y: CAR C IT'{y +- w})(D) is an element of Wj+k.

Letting i be j + k + 1, we have by Definition 4.12 that A//(F' I 7')(B) is

HF and is hence an element of Ui by Definition 4.11.

4. B -- [y: C, D]: Similar to the previous case.

By choosing n to be 0, the previous theorem yields the result that when

T(F)(B) = TYPE, M(F I _)(B) _ U.

We next need to establish that for any preterm a, if T(F)(a) = A, then

A//(F] 7)(a) E A//(F] 7)(A). The first step in this direction is the proof of
the substitution lemma below.

Proposition 4.15 If T0(F) = T0(F') = CONTEXT where for each s, F(s) is

defined if and only if F'(s) is defined, and 7 is an assignment satisfying both

F and F', then

1. ifr(s) = r'(s) (i.e., theyareequalwheneitherr(_) orr'(_) is defined),
then

(a) r(r)(a) = r(r')(a), for any preterm a.

(b) r(r)(A) = r(r')(A), for any pretype A.

2. M(r I _)(A)= M(r' I _)(A), when r(r)(A)= TYPE.

3. A//(F I 7)(a) = A//(F' I 7)(a), for any preterm a such that r(r)(a) is

defined.

Lemma 4.16 (substitution lemma) If T0(F,x:VAR A) = CONTEXT,
r(r)(a) = A, then

1. If T(F,x:VARA)(b)= B, then
M(Fl_)(b[a/x]) = M(F,x: WRA l_{x +- M(F I_)(a)})(b).

2. If T(F,x:CARA)(C) = TYPE,then
M(FI_)(C[a/x]) = M(F,x:WR A l_{x _- M(F I "7)(a)})(C).

38 Chapter 4. Dependent Types

Proof. The proof is by simultaneous structural induction on the preterm b

and the pretype C. The following cases deal with the preterm b.

. b - s: If s - x, then by Definition 4.12, the left-hand

side M(F] 7)(b[a/x]) is M(F] 7)(a), and the right-hand side

M(F,x:VAR A lT{x +-- M(rlT)(a)})(b) is also M(F I 7)(a).

If s _ x, then by Definition 4.12, the left-hand side and the right-hand

side are both equal to 7(s).

. b - (A(y: C): d)" Since C can contain free occurrences of x, we

have by the induction hypothesis that M(F] @(C[a/x]) =

M(F,x: VAR A IT{x _- M(F I T)(a)})(C). Also,

M(F I_)((A(y:C)'d)[a/x]) is equal to the set of ordered pairs (v,z)

such that v E M(F]7)(C[a/x]) and z = M(F,y:VAR C[a/x]]7{y +--

v})(d[a/x]).

By the induction hypothesis, M(F,y: VAR C[a/x]]7{y +---v})(d[a/x]) =

M(F,y:VAR C[a/x],x:VAR A]7{Y +-- v}{x +-- M(F] 7)(a)})(d). Since

x does not occur free in C[a/x], by Proposition 4.15 we can exchange

the occurrences of y and x so that M(F, y: VAR C[a/x], x: VAR A] 7{Y +--

v}{x +-- M(r l T)(a)})(d) = M(r,x:VAR A,y:VAR C[a/x] l T{x +--
M(r l _)(a)}{y _- v})(d).

By Definition 4.12, the right-hand side is the set of ordered pairs of the

form (v,z) such that v E M(F,x:VAR A I'y{x +--- M(F I'y)(a)})(C)

and z = M(F,x:VAR A,y:VAR C l_{x _ M(rl_)(a)}{y +--

v})(d). By Proposition 4.15 and the induction hypothesis, we know

that M(F,x:VAR A,y:VAR C]7{x +-- M(rlT)(a)}{y +-- v})(d) =

M(F,x:WR A,y:WR C[a/x] l _{x _- M(r l _)(a)}{y _- v})(d), and
hence it follows that the two sets of ordered pairs are equal.

3. b - (f c): In this case, b[a/x] - (f[a/x] c[a/x]) and the conclusion

follows easily from the induction hypothesis and Definition 4.12.

4. b -- (bl, b2): The conclusion follows easily from Definitions 2.15, 4.12,

and the induction hypotheses.

. b - (pi c): This case is also straightforwardsince b[a/x] -
(pi c[a/x]),and by the inductionhypothesis,M(F,x:VAR a]7{x +--
M(r l _)(a)})(c)= M(r l _)(c[a/x]).

The remaining cases deal with the pretype C.

39

1. C - s: This case is trivial since by Definition 2.15, C[a/x] - C and the

left-hand and right-hand sides both reduce to 7(C).

2. C - {y: T I d}" The argument here follows along the lines of the b -

(A(x: C): D) case above. By the induction hypotheses, we know that

M(r,x: VARA lT{x +--M(F IT)(a)})(T)
= M(r IZ)(r[a/x])

M(F,y: VARf[a/x],x:VAR d lT{y +--z}{x +--M(F I7)(a)})(d)
= M(r,y:vAR _[a/x] I_{y_ _})(d[a/_]),

forany z • M(F 17)(T[a/x])

The conclusion follows from Proposition 4.15 and Definition 4.12.

. C _ [y: C1----}62]: The argument here is similar to that of the previ-

ous case. Essentially, by the induction hypothesis and Proposition 4.15,

the function mapping z • M(F,x:VAR A 17{x +-- M(F 17)(a))(C 0

to M(F,y:VAR CI[a/x],x:VAR A lT{y +-- z}{x +- M(F I _)(a)})(C2)

is the same as the function mapping z • M(F I 7)(Cl[a/x]) to

M(r, y: VARCl[a/x] l _{y +--z})(C2[a/x]).

4. C = [y: C1, C2]: Similar to the previous case.

Proposition 4.17 is stated below without proof. It asserts the semantic

equivalence with respect to term a of types A and B when (A L B)r holds.

Note that its correctness depends on the soundness of the proof rules.

Proposition 4.17 If T0(F) = CONTEXT,a is a pretermsuchthat ffr)(a) :
B, and (A L B)r, then M(F I 7)(a) • M(F I 7)(A) iffM(FI 7)(a) •
M(r I7)(B).

Theorem 4.18 If T0(P) : CONTEXT, 7 is an assignment satisfying P, and a

is a preterm such that T(F)(a) = A, then M(F I 7)(a) • M(F I 7)(A) •

Proof. The proof is by induction on the structure of the preterm a.

1. a - s: Then by Definition 4.12, M(F I 7)(a) = 7(a), and by Defini-

tion 2.8, we have that 7(a) • M(F I 7)(A).

40 Chapter 4. Dependent Types

.

.

.

.

a -- (A(x: C): b): By Definition 4.9, we have r(F)(a) = A =

[x:C-+T(F,x:VAR C)(b)]. Let B label T(F,x:VAR C)(b). We know that

M(F] @(A) is of the form IIF where F maps z E M(F] @(C) to

M(r,x: VARO l_{x _- _})(B).
By the induction hypothesis on b, we know that for any z E M (F] _y)(C),

M(r,_: VARO l_{_ _- _})(b)• M(r,_: VARO l_{_ _- _})(B). Since

by Definition 4.12, M(F 1 7)(a) is a function mapping z • M(F 1 7)(c)

to M(r,x: VARC I_{_ +- _})(_),we have M(F I _)(a) • IIF by the
definition of II.

a = (f b): By Definition 4.9, we have that r(r)(f) = [x:B+d'],

r(F)(b) = B', (B _ B')r, A = A'[a/x], and t-r rc(B)(b). We know

by the induction hypothesis that M(F] 7)(f) • M(F] 7)([x: B-+A'])

and M(F] _y)(b) • M(F] _y)(B'). By Propositions 4.17 and 3.17,
M(F] _y)(b) • M(F] _y)(p(B)). We therefore have by Proposi-

tion 3.1r that M(F] _y)(b) • M(F] _y)(B). By Definition 4.12,

M(F]@(a) • M(F,x:VAR B]_y{x +-- M(F]@(b)})(A'), and hence by

Lemma 4.16 it follows that M(F] _y)(a) • M(F]_y)(A'[b/x]).

a = (al, a2): The conclusion follows easily from the induction hypothesis
and Definition 4.9.

a = (pi b): The conclusion follows easily from Proposition 3.17, the

induction hypothesis, and Definition 4.9. The (P2 b) case also employs
Lemma 4.16.

4.1 Summary

Dependent typing is a significant enhancement to PVS since it adds an im-

portant degree of flexibility and precision to the type system. Notions such

as subtype constraints and type equivalence that were introduced for subtyp-

ing can be extended for the case of dependent types. The semantic universe
must be extended to include additional sets to accommodate the semantics

of dependent types. The rank-boundedness of type dependencies is crucial

in demonstrating that dependent types can be interpreted in this extended

semantic universe.

Chapter 5

Theories and Parametric

Theories

The next extension of the PVS language introduces theories and parametric

theories. The theory construct of PVS provides a way of packaging together

a related collection of declarations. Theories can be parametric in individual

or type parameters. Thus, PVS permits polymorphism or type parametricity

only at the theory level rather than at the declaration level as in HOL [GM93].

We first consider PVS theories without parameters. The main change now is

that contexts are no longer simple and can contain theory declarations as well.

A theory declaration has the form m: THEORY = A, where A is a simple context

with no variable or theory declarations. If F(m) is the declaration m: THEORY =

A, then kind(F(m)) = THEORY, and definition(F(m)) = A. Correspondingly,

constants and type names are no longer just symbols but can be compound

names of the form m.s where m is a symbol naming a theory and s is a symbol

corresponding to the constant or type name.

5.1 Theories without Parameters

To define the type rules for theories, we first modify the definition of _- for

simple contexts so that the context argument is not always empty. Here A; F

represents the concatenation of contexts.

Definition 5.1 (type rules for contexts)

_-(O)({}) -- CONTEXT

T(O)(F, s : TYPE = T) = CONTEXT, ifF(s) and O(s) are undefined,

T((_)(F) : CONTEXT, and

41

42 Chapter 5. Theories and Parametric Theories

T((9) (F, c: T)

T((9)(F, x: VAR T)

7(@;F)(T)= TYPE
CONTEXT,ifF(c)and(_(c)areundefined,
7(0)(F)= CONTEXT,and
7(@;F)(T) = TYPE
CONTEXT, if F(x) and(9(x)areundefined,
7((-_)(F)= CONTEXT,and
7(@;F)(T) = TYPE

Example 5.2 (type rules for contexts)

7(Q) (real:TYPE, O:real, _<:[[real,real]-+bool]) = CONTEXT

The following rule handles theory declarations.

Definition 5.3 (type rule for contexts with theory declarations)

7((-))(F,m: THEORY = A) = CONTEXT if(_(m),F(m) are undefined

A only has constant and type declarations,

7(('_;F)(A) = CONTEXT,

T(O)(F) : CONTEXT

Example 5.4 (contexts with theory declarations)

7(Q)(reals: THEORY = (real:TYPE, O:real, _<:[[real,real]-+bool]))

----CONTEXT

Any reference to a type name or a constant s declared in a theory m

outside of this theory must be prefixed by the theory name, as in m.s. Note

that references to a type name or constant that is declared in the same theory

should not be given a theory prefix. Before we can give the type rules, we must

update the definition of the type expansion operation 6 to prefix symbols with

their theory names. Let F(m)(s) abbreviate definition(F(m))(s), which is the

5.1. Theories without Parameters 43

declaration of the symbol s in the definition of the theory m. Let r](F,m)(a)

be the result of prefixing every unprefixed type or constant symbol in a by m,

where a is either an individual or type expression. We omit the definition of

r] since it is straightforward.

We modify the definition of 6 in Definition 2.16 with the following clauses.

Definition 5.5 (expanded type for prefixed symbols)

_(r)(m.s)

_(r)(m.s)

= 5(C)(_(C,m)(de_nition(C(m)(s)))), if

de_nition(C(m)(s)) is nonempty.
= m.s if definition(F(m)(s)) is empty.

Example 5.6 (expanded type for prefixed symbols) Let fyl be the con-

text

_,reals:THEORY = (real: TYPE,

0: real,

_<:[[real,real]-+bool],

nonneg_real: TYPE = {x: real I

i: nonneg_real)

< (0,x)},

5(_l')(reals.nonneg_real) = {x: reals.real Ireals. _<(reals.O,x)}

The type rules for prefixed symbols are given below.

Definition 5.7 (type rules for prefixed symbols)

;(r)(m.s)

;(r)(m.s)

TYPE,ifkind(C(m))= THEORYand
kind(C(m)(s))= TYPE
_(r) (,(r, m)(type(r(m)(s)))),
if kind(r(m))= THEORYand

kind(r(m)(s))= CONSTANT

44 Chapter 5. Theories and Parametric Theories

Example 5.8 (type rules for prefixed symbols)

T(f_")(reals.nonneg_real)
_(U")(reals.1)

----TYPE

: {x:reals.real]reals._< (reals.0, x)}

The operations 7r, and # remain unchanged. An assignment 7 now maps a

theory name m to an assignment 7(m).

Definition 5.9 (meaning function for prefixed symbols)

M(rlv)(m.s) = v(m)(s)

Example 5.10 (meaning function for prefixed symbols) Let

satisfying assignment for ft" of the form

...{reals +- {real +- R}{0 +-- 0}...}

M(f2"]JI)(reals.real) ---- R

M(f2"]J')(reals.0) -- 0

Definition 5.11 (satisfaction for contexts with theories) An assign-

ment 7 satisfies a context F if in addition to the constraints stated in

Definition 2.18, 7 maps every theory m declared in F to a satisfying assign-

ment for the body of the theory given by definition(r(m)), that is for each

declared symbol s in m:

1. If kind(C(m)(s)) = TYPE, then 7(m)(s) • U.

2. If kind(r(m)(s)) = CONSTANT, then _(m)(s) • JM(F] 7)(T(F)(m.s)).

3. If definition(F(m)(s)) is nonempty, then

v(m)(s) = M(rlv)(v(r, m)(definition(r(m)(s)))).

5.2. Constant Definitions 45

5.2 Constant Definitions

We first extend the subset of PVS described so far to include constant def-

initions in a manner similar to type definitions. This extension is used in

formalizing the semantics of parametric theories. The syntax for a constant

definition is c: T = a where definition(F(c)) is a. These definitions are ex-

plicit, that is, not recursive. With this extension, the type rule for constant

declarations in contexts changes from that of Definition 3.10.

Definition 5.12 (type rule with constant definitions)

T(O)(F, c: T = a) T, /f F(c) is undefined,

O(c) is undefined,

T((_)(F) ----CONTEXT,

T((9; F)(a) = T',

(T _ T')r,

-r 7(T)(a)

The notion of satisfaction must be extended from that of Definition 5.11

to ensure that an assignment for a defined constant satisfies the definition.

Definition 5.13 (satisfaction with constant definitions) An assign-

ment _ satisfies a context F if in addition to the conditions in Definition 5.11,

whenever kind(F(s)) = CONSTANT and definition(F(s)) is nonempty, then

_(s) = M(r l _)(dCnition(r(s))).

5.3 Parametric Theories

The extension to parametric theories is obtained by permitting theories to be

declared as m[II]: THEORY = A, where II is a context listing the parameters

and A is the body of the theory. If the above declaration of m occurs in

context F, then II is formals(F(m)), and A is definition(F(m)). For nonpara-

metric theories, formals(F(m)) is empty. Types or constants declared in a

parametric theory are referenced outside the theory as m[(7].s, where (7 is a

list of actual parameters consisting of types and terms. The type rule from

the nonparametric case must be modified to check the parameters.

46 Chapter 5. Theories and Parametric Theories

Definition 5.14 (type rule for contexts with parametric theories)

T((_)(F, m[II]: THEORY = A)

= CONTEXT if F(m), O(m), II(m) are undefined

T((_)(F) = CONTEXT

T(O; F)(H) = CONTEXT,

II has only constant and

type declarations without definitions,

T((_; F; II)(A) = CONTEXT

A only has type and constant declarations

The type rules for prefixed symbols are given below. The notation II = (7,

where II is of the form Sl: C_l,... ,s,: c_,, and (7 is of the form (71,... ,(7,,

is short for the context Sl'C_l = (T1,...,S,:C_, = (7,. The definition of

_/ is now extended to substitute actual theory parameters for formals, so

that _/(F,m[(7])(a) prefixes every unprefixed symbol s in a that is declared

in definition(r(m)) by m[(7], and replaces any si in a that is declared in

formals(F(m)) by the corresponding (7i in (7.

Definition 5.15 (type rules for prefixed names with actuals) Let II

be/ormals(r(m)).

T(F)(m[(7].s) = TYPE, if

kind(F(m)) = THEORY

kind(r(m))(s) = TYPEand
_(r)(n = (7)= CONTEXT

_(r)(m[(7].s)= _(r)((_(r,m[(7])(type(r(m)(s)))),

if kind(F(m)) = THEORY

kind(r(m)(s)) = CONSTANT and

_(r)(n = (7)= CONTEXT

Definition 5.16 (type expansion with parametric theories)

5(r)(m[(7].s) = 5(r)(O7(r, m[(7])(definition(r(m)(s))))), if

definition(F(m)(s)) is nonempty.

5(F)(m[(7].s) = m[(7].s, /f definition(F(m)(s)) is empty.

5.3. Parametric Theories 47

The definition of an assignment for a context with parametric theories

is a bit complicated. In the nonparametric case, 7(m) simply returns an

assignment of values for the types and constants declared in the theory m.

For the case of parametric theories m, 7(m) returns a function that maps the

meaning of the given actuals _ to an assignment 7(m)(AA(F] _)(_)) for the

types and constants declared in the theory m. There is an important restriction

that 7(m) must be rank-preserving, that is, if _v and _vI are assignments for II

so that for each i where IIi is a type parameter, the rank of _v(IIi) equals the

rank of _v'(IIi), then the ranks of 7(m)(_v)(s) and 7(m)(_v')(s) must be the

same for each type symbol s declared in m.

It is also important to observe that the semantics of parametric theories

makes use of the axiom of choice since the assignment corresponding to a

theory m of the form m[t: TYPE]: THEORY = {c:t} is essentially a choice function.

Let -y{II +-- _v} represent the assignment such that -y{II +-- _v}(s) = _v(s)

for s in the domain of the context II, and 7(s), otherwise. The meaning of

symbols of the form m[a].s can then be defined as below.

Definition 5.17 (meaning function for prefixed symbols with actuals)

M(F I_)(m[_].s)
= M(F;n;a I_(n +- _}(a +-_(m)(_)})(s), where

II = dormals(C(m))
A = definition(F(m))
(r) = M(F I)((n = _)(r)), fort e n

The definition of a satisfying assignment given in Definition 5.11 also must

be strengthened. Let II be the formal parameters to theory m in context F;

then, an assignment _v is said to be satisfying parameter assignment for II

under the assignment -y to F iff -y{II +- _v} is a satisfying assignment for II.

Definition 5.18 (satisfaction for contexts with parametric theories)

An assignment _ satisfies a context F if in addition to the constraints stated

in Definition 5.11, "y maps every parametric theory m declared in F with

parameters II and definition A, to a function that maps any satisfying pa-

rameter assignment w for the theory parameters II (namely, formals(F(m)))

to a satisfying assignment 7{II +-- _v}{A +-- 7(m)(_v)} for A (given by

definition(C (m))). •

48 Chapter 5. Theories and Parametric Theories

5.4 Summary

Theories are used to package related declarations together. Parametric the-

ories can be used to package together declarations that are generic in type

and individual parameters. The type rules for contexts must be extended to

accommodate the theories. The type rules for simple (nonparametric) theories

are straightforward given this extension. The operation of expanding a type

using type definitions must be enhanced so that symbols declared in a theory

are prefixed with their theory name when referenced outside the theory. As-

signments now have the same nested structure as contexts, and the semantic

definition is easily extended to handle prefixed symbols. Parametric theories

are more complex. The theory prefixes now contain actual parameters that

have to be typechecked relative to the expected formal parameters. The as-

signments corresponding to parametric theories are functions that map given

assignments for the formals to assignments for the declarations within a the-

ory. Such a mapping must be constrained to be rank-preserving. Parametric

theories can have subtype parameters, and assumptions on the parameters.

The rules for subtype parameters and assumptions are omitted for now but

will be included in an expanded version of this report.

Chapter 6

Conditional Expressions and

Logical Connectives

We have, so far, introduced the core of PVS containing types, type definitions,

constant and variable declarations, subtypes, dependent types, and theories.

In extending the language with both explicit and recursive constant definitions

and formulas, a crucial difference is that the logical context under which a

type-correctness condition is generated provides additional assumptions that

can be used in proving any proof obligations. Examples of expressions where

an extended context is needed to establish type correctness by discharging

proof obligations include

1. x -¢ y D (x+y)/(x-- y) _< 0. The type of the division operator constrains

the denominator to be nonzero, that is, {x: real I x -¢ 0}. In the given

expression, the denominator can be shown to be nonzero only in the

context of the antecedent x -¢ y.

. IF(/ > O, i,-i) has type nat given integer i provided the then and else

parts are typechecked with the assumptions i > 0 and _(i > 0), respec-

tively.

PVS has a polymorphic primitive equality predicate:

equality[T : TYPE] : THEORY = { =: [[T, T] -> bool] }

Note that an equality of the form equality[T].=(a, b) is informally written

as a = b. When it is relevant to indicate the type parameter, we write the

equality as a =T b. It can be deduced from the meaning of equality that if

S is a subtype of T, then for a and b in S, it must be the case that a =s b

49

50 Chapter 6. Conditional Expressions and Logical Connectives

iff a =T b. Thus, we can assume that equality is always parameterized by

a maximal type. We assume that any relevant context F contains the above

declaration of the theory equality. Furthermore, any satisfying assignment

_yfor such a F must satisfy

 r(equality) (X)(=) = {(x,x>Ix

The negation operation can be defined in terms of equality as shown below.

We assume that the context contains a declaration of the form

7 : [bool--+bool] = (A (x : bool): x = FALSE)

As is clear, a satisfying assignment _y for a context F containing the above

declaration must be such that 7(7) yields the usual truth-table semantics, that

is, {(0,1),(1,0)}.

We can then introduce the polymorphic IF-THEN-ELSE operation as fol-

lows:

if_def [T: TYPE]: THEORY = { IF:[bool,T,T -> T] }

In typechecking conditional expressions, the notion of context has to be

extended to include formulas so that the typechecking of the subterm b in

IF(a, b, c) is done in the context of a, and the typechecking of c is done in the

context of _a. There is one new typechecking rule for contexts with formulas.

CONTEXT, if

TO(F) = CONTEXT, and

boo)

Note that the type rule checks that the type of a is compatible with bool

rather than equivalent to it since it is possible that the type of a might be a

subtype of bool.

Definition 6.1 (satisfaction for contexts with formulas) An assign-

ment 7 satisfies context F when in addition to the conditions in Definition 5.18,

for each prefix r', a of F, A/l(r' I @(a) = 1. ..

The typechecking of conditional expressions is different from that of other

application expressions since the test part of the conditional expression is

introduced into the context as a contextual assumption.

51

Definition 6.2 (type rule for conditional expressions)

T(F)(if_def [T].IF (a, b, c)) y, if (¢(r)(a) _ bool)_,
¢(r, a)(_)= B,

_(r, _a)(c) = C,
(C _ T)r,_,
_,_o _(Y)(c)

The meaning of conditional expressions must be treated in a special way

since the else part need not denote when the test part is true and, correspond-

ingly, the then part need not denote if the test part is false. We assume that

any relevant contexts F contain the above declaration of the if_def theory.

Conditional expressions can be regarded as a new construct in the language

rather than a form of application. However, it is conservative to regard con-

ditional expressions as applications since the latter introduce the additional

constraint that all the arguments must already denote, that is, applications

are strict.

Definition 6.3 (meaning function for conditional expressions)

{ M(F] _)(b), ifM(r] _)(a)= 1A/t(F]7)(if-def[T]'IF(a'b'c)) = A/t(F]7)(c), otherwise

The semantics for conditional expressions raises an important issue. The

equality

if_def[bool].IF(x, y, FALSE)= if_def[bool].IF(y,x, FALSE)

is semantically valid for variables x and y of type bool. An expression like

if_def[bool].IF(i 7_ O, 1/i > O, FALSE) can be typechecked to have the type

bool since it generates a valid proof obligation i 7_ 0 D i 7_ 0, but the seem-

ingly equivalent expression if_def[bool].IF(1/i > O,i 7£ 0, FALSE) generates

an unverifiable proof obligation i 7_ 0. This may seem contradictory since the

equality suggests a transformation of a type correct conditional expression to

a type incorrect expression. The resolution here is that equality cannot be

52 Chapter 6. Conditional Expressions and Logical Connectives

instantiated with i 7! 0 for x and 1/i > 0 for y since the expression 1/i > 0

typechecks as having type bool only when i 7! 0 is known from the context.

The same applies in the case of the other propositional connectives, thus en-

suring that each expression is type correct in the context in which it occurs.

We can then define the propositional connectives in terms of conditional

expressions.

A:[[uool,bool]- bool]
v: [[uool,bool]- bool]

[[bool,bool]- bool]

= /k(x:bool,y:bool): if_def[bool].IF(x,y, FALSE)

= /k(x: bool,y: bool): if_def[bool].IF(x, TRUE, y)

= /k(x: bool, y: bool): if_def[bool].IF(x, y, TRUE)

In the typechecking of terms of the form a A b, we follow the corresponding
rule for the definition so that the term a is assumed in the context when

typechecking term b. Similarly, for a V b, the formula _a is assumed in the

context when typechecking b, and for a D b, the formula a is assumed in the

context when typechecking b. The Boolean equivalence operator IFF has no

special rules for adding formulas to contexts during typechecking.

6.1 Summary

The use of assumption formulas enables expressions to be typechecked within

the narrow context of their use so that the governing assumptions can be used

in discharging any proof obligations. The type rules for conditional expressions

and the Boolean connectives A, V, and D make use of contextual assumptions.

Chapter 7

Proof Theory of PVS

The final step in the presentation of the semantics is the presentation of the

proof rules for the idealized subset of PVS described thus far. As already indi-

cated, the proof theory is an integral part of the semantics since typechecking

and proof checking are closely intertwined. Fortunately, the proof rules turn

out to be much less complicated than the type rules.

The PVS proof theory is presented in terms of a sequent calculus. A

sequent is of the form E t-r A, where F is the context, E is a set of antecedent

formulas, and h is a set of consequent formulas. Such a sequent should be read

as stating that the conjunction of the formulas in E implies the disjunction of
formulas in A.

Inference rules are presented in the form

premise (s)
name side condition

conclusion

7.1 PVS Proof Rules

7.1.1 Structural Rules

The structural rules permit the sequent to be rearranged or weakened via the

introduction of new sequent formulas into the conclusion. All the structural

rules can be expressed in terms of the single powerful weakening rule shown

below. It allows a weaker statement to be derived from a stronger one by

adding either antecedent formulas or consequent formulas. The relation E_ C_

E2 holds between two lists when all the formulas in E1 occur in the list E2.

E1 [-r A1

E2 t-r A2
W if _1 C_ E2 and A1 C_ A2

53

54 Chapter 7. Proof Theory of PVS

Both the Contraction and Exchange rules shown below are absorbed by the

above weakening rule W. The Contraction rules C t- and t- C allow multiple

occurrences of the same sequent formula to be replaced by a single occurrence.

a,a, Et-rh Ct- Et-ra, a,h t-C
a, E t-r h E t-r a, h

The Exchange rule asserts that the order of the formulas in the antecedent

and the consequent parts of the sequent is immaterial. It can be stated as

E_, b, a, E2 t-r A E t- r A1, b, a, A2
Xt- t-X

E_, a, b, E2 t-r A E t- r A1, a, b, A2

As seen above, inference rules have the general form

E1 [- A1 "'" En [- An

Et-A
R

This says that if we are given a leaf of a proof tree of the form E t- A, then by

applying the rule named R, we may obtain a tree with n new leaves.

7.1.2 Cut Rule

The cut rule Cut can be used to introduce a case split on a formula a into a

proof of a sequent E t-r A so as to yield the subgoals E, a t-r A and E t-r a, A,

which can be seen as assuming a along one branch and _a along the other.

(r(r)(a) _ bool)r 2, a _-r A E t-r a,A Cut
Et-rA

7.1.3 Propositional Axioms

The axioms rule Ax simply asserts that a follows from a.

nx

E,a t-r a,A

The next two rules assert that any sequent with either an antecedent oc-

currence of FALSE or a consequent occurrence of TRUE is an axiom.

FALSE F- F-TRUE
E, FALSE F-rA E F-rTRUE, A

7.1. PVS Proof Rules 55

7.1.4 Context Rules

Certain formulas hold in a context simply because they are already asserted

in the context either as a formula or a constant definition.

-- ContextFormula if a is a formula in F
t-p a

ContextDefinition if s: T = a is a constant definition in F
f-ps=a

The context F can be extended with antecedent formulas or negations of

consequent formulas using the following two rules.

E, a F-r,a A E F-r,_a a, AContext F- F- Context
E, a F-r A E F-r a, A

The following context-weakening rule is useful since it shows that provabil-

ity is monotonic with respect to the context.

Et-rA

E F-r, A
ContextW if F is a prefix of F'

7.1.5 Conditional Rules

The rules governing the elimination of IF-THEN-ELSE in a proof are unusual

since they augment the context with the test part or its negation, as in the

corresponding type rules.

E, a, b F-r,_ A E, c F-r,_ a, A
IF F-

E, IF(a, b, c) Fr A

E, a F-p,_ b, A E F-r,_ a, c, A t- IF
kp IF(a, b, c), A

7.1.6 Equality Rules

The rules for equality can be stated as below. The rules of transitivity and

symmetry for equality can be derived from these rules. The notation a[e] is

used to highlight one or more occurrences of e in the formula a such that there

are no free variable occurrences in e. 1 The notation A[e] similarly highlights

occurrences of e in A.

1We enforce an invariant on a sequent that it must not contain any free variables. This

invariant is preserved by each of the proof rules.

56 Chapter Z Proof Theory of PVS

Refl
E F-r a = a, h

a = _,r[_] _ A[_]
a = b,E[a]F-rA[a]Repl

7.1.7 Boolean Equality Rules

The rule Repl TRUE asserts that an antecedent formula a can be treated as an

antecedent equality of the form a = TRUE, and correspondingly, a consequent

formula a can be treated as an antecedent equality of the form a = FALSE.

E[TRUE], a [-r A[TRUE] Repl TRUE
r[a], a _ A[a]

E[FALSE], a Hr A[FALSE] Repl FALSE
r[a] _ a,A[a]

The rule TRUE-FALSE asserts that TRUE and FALSE are distinct Boolean

constants.

TRUE-FALSE
E, TRUE= FALSE Hr A

7.1.8 Reduction Rules

The reduction rules are equality rules (axioms) that provide the obvious sim-

plifications for applications involving lambda abstractions and product projec-

tions.

F-r (A(x: T)" a)(b) = a[b/x] t3

7[

_-r pi(al, a2) ----ai

7.1.9 Extensionality Rules

The extensionality rules are also equality rules for establishing equality be-

tween two expressions of function or product type. The extensionality rule

for functions, FunExt, introduces a Skolem constant s to determine that two

functions f and g are equal when the results of applying them to an arbitrary

argument s are equal.

r e_,8:A(f s)=.Es/xl (g s),A
FunExt F(s) undefined

E _-r f =[x:A-+B] g, A

7.2. Soundness of the Proof Rules 57

The extensionality rule for products asserts that two products are equal if

their corresponding projections are equal.

E kr pl(a) =T1 pl(b),A E kr p2(a) ----T2[(p 1 a)/x] p2(b),A

E t-r a =Ix:TIT2] b, A TupExt

Recall that the quantifiers can be defined in terms of lambda abstraction

and equality so that (V(x: T): a) is just (A(x: T): a) = (A(x: T): TRUE). Exis-

tential quantification (3(x: T): a) can easily be defined as =(V(x: T): =a). The

proof rules for quantifiers can then be derived from the rules fl, TupExt, and

the equality rules.

7.1.10 Type Constraint Rule

We need a rule to introduce the type constraint on a term as an antecedent

formula of the given goal sequent.

_(r)(a) = A 7c(A)(a), E t-r A

Et-rA
Typepred

7.2 Soundness of the Proof Rules

Proposition 7.1 If F is a prefix of F', TO(F) = TO(F') = CONTEXT, 7' is

a satisfying assignment for F', and 7 = 7' [F then for any a such that

T(F)(a) = T(F')(a), it is the case that AA(F] 7)(a) = AA(F'] 7')(a).

Theorem 7.2 (soundness) IfT()(r) = CONTEXT such that for every formula

a in E; A, (T(F)(a) _ bool)r, and E t-r A is provable, then for any satisfying

assignment 7 for F, either there is a formula b in E, such that AA(F] 7)(b) = 0

or a formula c in A, such that AA(F] 7)(c) = 1.

Proof. The proof is by induction on the structure of the proof of E t-r A.

Recall that this proof is actually part of a simultaneous induction that includes

the soundness of the type rules relative to the semantic function, that is,

Theorems 4.14 and 4.18. Specific invocations of the soundness theorem occur

in the proofs of Theorem 3.19 and Proposition 4.17.

1. Structural Rules: Since the subset of formulas in the premise and the

conclusion of these rules are the same, the conclusion follows easily from

the induction hypothesis.

58 Chapter 7. Proof Theory of PVS

.

.

4.

.

.

.

Cut: By the semantic soundness of the type rules, we have M(F] 7)(a) E

2. If M(F] 7)(a) = 0, then by the induction hypothesis on the sec-

ond subgoal of the proof rule, there must be some b in E such that

M(F] 7)(b) = 0 or a c in A such that M(F] 7)(c) = 1. The case when

M(F] 7)(a) = 1 is symmetrical.

Propositional Axioms: Obvious.

Context Rules:

ContextFormula: If _ satisfies F and a • F, then M(F] _)(a) = 1.

ContextDefinition: If _ satisfies F and s: T = a is a declaration in F,

then by the definition of satisfaction, M(F] 7)(s) = M(F] 7)(a).

Context t-: The argument is trivial when M(F] 7)(a) = 0. Oth-

erwise, _ satisfies the extended context F, a, and the conclusion

follows from the induction hypothesis.

l- Context: Similar to Context l- above.

ContextW: If _ satisfies F I, then it also satisfies F, and hence the

proof.

Conditional Rules: We only consider IF l- since the l- IF proof is similar.

If M(F] 7)(IF(a, b, c)) = 0, the conclusion follows trivially. Otherwise,

If _ satisfies F, then M(F] 7)(a) • 2. If M(F] 7)(a) = 1, then

M(F] 7)(b) = 1. The induction hypothesis on the subgoal E, a, b t-r,a A

yields the desired conclusion. Similarly, if M(F] 7)(a) = 0, we have

M(F] 7)(c) = 1 and the induction hypothesis on the second subgoal

yields the desired conclusion.

Equality Rules: The Refl rule is obvious. For the Repl rule, if

M(F] 7)(a = b) = 0, the conclusion follows trivially. Otherwise,

M(F] _)(a) = M(F] _)(b). Hence, _ satisfies the extended con-

text F,a -- b. Then for each c[a] in _[a] or A[a], =

M(r I

Boolean Equality Rules: The Repl TRUE and Repl FALSE rules fol-

low easily since when M(F] 7)(a) = 1, we have M(F] 7)(c[a]) =

M(F] 7)(c[TRUE]). A similar argument applies to Repl FALSE.

The soundness of TRUE-FALSE is easy since M (F]7)(TRUE = FALSE) = 0.

7.2. Soundness of the Proof Rules 59

8. Reduction Rules: The /_-reduction rule follows because

A/I(F I 7)((A(x:T): a)(b)) is A/I(F,x:VAR T IT{x +- A/I(F I 7)(b)})(a)

which by the Substitution Lemma 4.16 is equal to A/I(F 17)(a[b/x]).

The soundness 7c-reduction rule is a direct consequent of Definition 2.6.

9. Eztensionality Rules:

FunExt: First consider the case when the domain type 3d(F I 7)(A) is

empty. Then by Definition 4.12, A/I(F I 7)(f) = A/I(F I 7)(g) = 0.

Therefore A/I(F 17)(f = g) = 1 and hence the conclusion. 2

The case when A/I(F I 7)(A) is nonempty, we have for any 7 satisfy-

ingF and s E A/I(F I 7)(A), that 7' given by 7{s +-- z} is a satisfying

assignment for F, s: A. By the induction hypothesis, there is either

an a in E such that M(r,s:AlT')(b) = o or a cin (f s) = (g s),A

such that A/I(F,s:A I 7')(c) = 1. If we have such a b in E, by

Proposition 7.1, we also have that A/I(F I 7)(b) = 0. A similar

argument can be used if we have such a c in A. If c is (f s) = (g s),

then A/I(F I 7)(f)(z) = A/I(F I 7)(g)(z) for every z in A/I(F I 7)(A).

By set-theoretic extensionality, this means that A/I(F I 7)(f) and

A/I(F I 7)(g) are identical elements of IIF where F maps z in

A/I(F I 7)(A) to an element of A/I(F,x:VhR A I 7{x +-- z})(B).

Therefore A/I(F l T)(f = g)= 1 as desired.

TupExt: If there is some d in E such that by applying the induction

hypothesis to any of the subgoals A/I(F I 7)(d) = 0, then the same

holds for the conclusion sequent. Similarly, if the induction hypoth-

esis on some subgoal yields a c in A such that A/I(F I 7)(c) = 1,

then the same holds for the conclusion sequent. So the remain-

ing case is when, by the induction hypothesis, A/I(F I 7)(pi(a)) =

A/I(F I 7)(pi(b)) for each i E {1,2}. It is therefore easy to conclude

by set-theoretic extensionality that A/I(F I 7)(a) and A/I(F I 7)(b)

are identical elements of A/I(F I 7)(a/[T1,T2]). We can then use

Proposition 4.17 to conclude that A/I(F I 7)(a) and A/I(F I 7)(b) are

identical elements of A/I(F I 7)([T1, T2]).

10. Type Constraint Rule: Recall from Proposition 3.17 that when ffr)(a) =

A, then A/I(F I 7)(7_(A)(a)) = 1. Given this and the induction hy-

2Since the subgoal sequent E F-r,8:A (f s) = (g s),A is valid when Ad(r I 7)(A) = 0 for
all assignments 7, it is natural to ask how it is actually proved. The only way a type A can
be empty under any assignment 7 is if Ad(F I 7)(Tr(A)(a) = 0). The Typepred rule can
therefore be used on the Skolem constant s to complete the proof.

60 Chapter 7. Proof Theory of PVS

pothesis, it must either be the case that we have a b in E such that

M(F] 7)(b) = 0 or a c in A such that M(F] 7)(c) = 1.

To tie the development so far into a single simultaneous induction as

promised, we state the key theorem whose subproofs have been given by the

theorems presented thus far, namely, Theorems 4.14, 4.18, and 7.2.

Theorem 7.3 If rOW) = CONTEXT, then

1. If E,A is a list of preterms such that for every a in E;A, (T(F)(a)

bool)r, and E _-r A is provable, then for any satisfying assignment 7 for

F, either there is a b in E, such that M(F] 7)(b) = 0 or a c in A, such

that M(F] 7)(c)= 1.

2. If A is a pretype such that T(F) (A) = TYPE, then for any assignment 7

satisfying F, M(F] 7)(A) E U.

3. If a is a preterm such that T(F)(a) = A, then for any assignment 7

satisfying F, M(F] 7)(a) E M(F] 7)(A).

7.3 Summary

The logical inference rules for the PVS logic have been presented in a sequent

calculus format. The formal semantics presented in the earlier chapters is used

to establish the soundness of these proof rules.

Chapter 8

Conclusion

We have presented the syntax and semantics of idealized PVS in several stages.

In the first stage we introduced the simply typed fragment, which was then ex-

tended with type definitions. The third such fragment included subtyping; the

fourth fragment introduced dependent typing. Finally, we introduced constant

definitions and parametric and nonparametric theories.

The semantic definition was given in a novel, functional style where a

canonical type was assigned to each type correct term. The interplay be-

tween types and proofs in PVS introduced subtleties and complexities into

the semantic definition. We can now answer some of the questions raised in

Chapter 1:

• What is the semantic core of the language, and what is just syntactic

sugar?

The semantic core of the language is a typed lambda calculus with simple

function and tuple types, predicate subtypes, dependent types, paramet-

ric theories, and conditional expressions. Many of the other features of

the PVS language such as records and update expressions can be ex-

plained in terms of the core language.

• What are the rules for determining whether a given PVS expression is

well typed?

The typechecking rules have been presented in terms of the definition of

the w operator in Chapters 2, 3, 4, 5, and 6.

• How is subtyping handled, and in particular, how are proof obligations

corresponding to subtypes generated?

Typechecking an expression a with respect to predicate subtype con-

straint {x: TIp(x)} is done by generating the proof obligation p(a) under

61

62 Chapter 8. Conclusion

the logical context in which a is being typechecked. This is made pre-

cise in Definitions 3.10 and 6.2. Proof obligations are generated when

typechecking contexts (for nonemptiness), typechecking expressions with

respect to expected subtypes, and comparing two types containing sub-

type expressions for compatibility.

What is the meaning, in set-theoretic terms, of a PVS expression or

assertion?

The set-theoretic meaning of well-formed PVS types and expressions is

given by a meaning function M that assigns a set M(F] 7)(T) from the

universe U to each type T, and an element M(F] 7)(a) of M(F] 7)(T)

to a given term a of type T.

Are the type rules sound with respect to the semantics?

The typechecking function T is defined to check contexts, preterms, and

pretypes for type correctness. The type rules are shown to be sound with

respect to the given semantics in Theorem 7.3.

Are the proof rules sound with respect to the semantics?

The proof rules are given in Chapter 7 in a sequent calculus format and

proved to be sound with respect to the semantics in Theorem 7.3.

What is the form of dependent typing used by PV& and what kinds of

type dependencies are disallowed by the language?

The semantic analysis of dependent typing in Chapter 4 revealed that

type dependencies were constrained to be rank-bounded. This is true be-

cause the dependencies in dependent typing only constrain the predicate

part of predicate subtypes. Thus, when there is a dependent type T(n)

that depends on a parameter n, the meaning of T(n) has a fixed rank re-

gardless of the meaning assigned to n. The PVS language features used

to define dependent types all preserve the rank-boundedness. Language

extensions violating rank-boundedness such as a type dependency of the

form [n: nat-+T _] are disallowed. One can extend the language with

such dependent types, but the semantics would then be considerably

more complicated.

What is the meaning of theory-level parametricity, and what, if any, are

the semantic limits on such parameterization ?

63

The semanticsof parametric theories is describedin Chapter 5. In par-
ticular, the semanticsfor parametric theoriesis given in terms of rank-
preservingmapsbetweenthe meaningsof the parametersand the mean-
ings of the identifiers declaredin the theory. Thesemapsmust be such
that the rank of an assignmentto a type in a theory dependsonly on
the ranks of the (meaningsof the) type parameters.

What language extensions are incompatible with the reference semantics

given here?

We have already indicated that any language extension, such as an n-

tuple type T _, that violates rank-boundedness would be incompatible

with the semantics presented here.

This report presents only the core language of PVS. A more complete

semantic treatment would include arithmetic, recursive constant definitions,

inductive definitions, recursive datatypes, assumptions on theory parameters,

and type judgements.

Acknowledgments. The advice and encouragement of John Rushby, Rick

Butler, Paul Miner, Pat Lincoln, and Mandayam Srivas are greatly appreci-

ated, as are the useful expert comments of Peter Dybjer, Mike Gordon, Doug

Howe, and Paul Jackson. Bruno Dutertre, Paul Miner, and Harald Ruefi sug-

gested numerous improvements to earlier drafts.

Bibliography

[AMCP84]

[And86]

[CAB+86]

[Chu40]

[DFH+91]

[Dyb91]

[EHDM93]

[FBHL84]

P. B. Andrews, D. A. Miller, E. L. Cohen, and F. Pfenning. Au-

tomating higher-order logic. In W. W. Bledsoe and D. W. Love-

land, editors, Automated Theorem Proving: After 25 Years, pages

169 192. American Mathematical Society, Providence, R.I., 1984.

Peter B. Andrews. An Introduction to Logic and Type Theory: To

Truth through Proof. Academic Press, New York, NY, 1986.

R. L. Constable, S. F. Allen, H. M. Bromley, W. R. Cleaveland,

J. F. Cremer, R. W. Harper, D. J. Howe, T. B. Knoblock, N. P.

Mendler, P. Panangaden, J. T. Sasaki, and S. F. Smith. Imple-

menting Mathematics with the Nuprl Proof Development System.

Prentice-Hall, Englewood Cliffs, N J, 1986.

A. Church. A formulation of the simple theory of types. Journal

of Symbolic Logic, 5:56 68, 1940.

Gilles Dowek, Amy Felty, Hugo Herbelin, G6rard Huet, Christine

Paulin-Mohring, and Benjamin Werner. The COQ proof assis-

tant user's guide: Version 5.6. Rapports Techniques 134, INRIA,

Rocquencourt, France, December 1991.

Peter Dybjer. Inductive sets and families in Martin-LSf's type

theory and their set-theoretic semantics. In Logical Frameworks,

pages 280 306. Cambridge University Press, 1991.

User Guide for the EHDM Specification Language and Verification

System, Version 6.1. Computer Science Laboratory, SRI Interna-

tional, Menlo Park, CA, February 1993. Three volumes.

A. A. Fraenkel, Y. Bar-Hillel, and A. Levy. Foundations of Set

Theory, volume 67 of Studies in Logic and the Foundations of

64

Bibliography 65

[FGJM85]

[GH93]

[GM93]

[How91]

[How96]

[Jon90]

[Lain94]

[LP97]

[Me189]

Mathematics. North-Holland, Amsterdam, The Netherlands, sec-

ond printing, second edition, 1984.

Kokichi Futatsugi, Joseph Goguen, Jean-Pierre Jouannaud, and

Jos6 Meseguer. Principles of OBJS. In Brian K. Reid, editor,

12th A CM Symposium on Principles of Programming Languages,

pages 52 66. Association for Computing Machinery, 1985.

John V. Guttag and James J. Horning with S. J. Garland, K. D.

Jones, A. Modet, and J. M. Wing. Larch: Languages and Tools

for Formal Specification. Texts and Monographs in Computer

Science. Springer-Verlag, 1993.

M. J. C. Gordon and T. F. Melham, editors. Introduction to

HOL: A Theorem Proving Environment for Higher-Order Logic.

Cambridge University Press, Cambridge, UK, 1993.

Douglas J. Howe. On computational open-endedness in Martin-

LSf's type theory. In Proceedings, Sixth Annual IEEE Symposium

on Logic in Computer Science, pages 162 172, Amsterdam, The

Netherlands, 15 18 July 1991. IEEE Computer Society Press.

Douglas J. Howe. Semantic foundations for embedding HOL in

Nuprl. In Martin Wirsing and Maurice Nivat, editors, Algebraic

Methodology and Software Technology, 5th International Confer-

ence, AMAST'96, pages 85 101. Number 1101 in Lecture Notes

in Computer Science, Springer Verlag, 1996.

Cliff B. Jones. Systematic Software Development Using VDM.

Prentice Hall International Series in Computer Science. Prentice

Hall, Hemel Hempstead, UK, second edition, 1990.

Leslie Lamport. The temporal logic of actions. ACM TOPLAS,

16(3):872 923, May 1994.

Leslie Lamport and Lawrence C. Paulson. Should your specifi-

cation language be typed? SRC Research Report 147, Digital

Systems Research Center, Palo Alto, CA, May 1997. Available at

http ://www. research, digital, com/SRC.

Thomas F. Melham. Automating recursive type definitions in

higher order logic. In G. Birtwistle and P. A. Subrahmanyam,

66 Bibliography

[MMMS90]

[OS97]

[OSRSC98]

[RAISE92]

[Spi88]

editors, Current Trends in Hardware Verification and Theorem

Proving, pages 341 386, New York, NY, 1989. Springer-Verlag.

Albert R. Meyer, John C. Mitchell, Eugenio Moggi, and Richard

Statman. Empty types in polymorphic lambda calculus. In Ger-

ard Huet, editor, Logical Foundations of Functional Programming,

University of Texas at Austin Year of Programming, pages 273

284. Addison-Wesley, 1990.

S. Owre and N. Shankar. Abstract datatypes in PVS. Technical

report, Computer Science Laboratory, SRI International, Menlo

Park, CA, December 1997. Revised version of SRI-CSL-93-9. To

appear as a NASA Contractor Report.

S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert.

User Guide for the PVS Specification and Verification System.

Computer Science Laboratory, SRI International, Menlo Park,

CA, September 1998. Three volumes: Language, System, and
Prover Reference Manuals.

The RAISE Language Group. The RAISE Specification Lan-

guage. BCS Practitioner Series. Prentice-Hall International,

Hemel Hempstead, UK, 1992.

J. M. Spivey. Understanding Z: A Specification Language and its

Formal Semantics. Cambridge Tracts in Theoretical Computer

Science 3. Cambridge University Press, Cambridge, UK, 1988.

REPORT DOCUMENTATION PAGE FormApprov_
{?M[_ NR, ft7fH-ftlt:lt:l

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188),
Washington, DO 20,503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

May 1999 Contractor Report
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

The Formal Semantics of PVS

6, AUTHOR(S)

Sam Owre

Natarajan Shankar

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

SRI International

Computer Science Laboratory

Menlo Park, CA 94025

9, SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration
Langley Research Center

Hampton, VA 23681-2199

519-50-11-01

NAS1-18969

8. PERFORMING ORGANIZATION
REPORT NUMBER

10, SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR- 1999-209321

11.SUPPLEMENTARYNOTES
Technical Advisor: Paul S. Miner

12a, DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 62 Distribution: Standard

Availability: NASA CASI (301) 621-0390

12b, DISTRIBUTION CODE

13, ABSTRACT (Maximum 200 words)

A specification language is a medium for expressing what is computed rather than how it is computed.

Specification languages share some features with programming languages but are also different in several

important ways. For our purpose, a specification language is a logic within which the behavior of computational

systems can be formalized. Although a specification can be used to simulate the behavior of such systems, we

mainly use specifications to state and wove system properties with mechanical assistance.

We present the formal semantics of the specification language of SRI's Prototype Verification System (PVS).

This specification language is based on the simply typed lambda calculus. The novelty in PVS is that it contains

very expressive language features whose static analysis (e.g., typechecking) requires the assistance of a theorem

prover. The formal semantics illuminates several of the design considerations underlying PVS, the interaction

between theorem proving and typechecking.

14, SUBJECT TERMS

Formal specification and verification, Formal semantics, Higher-order logic, PVS

Predicate subtypes, Proof obligations, Dependent types, Parametric theories

17, SECURITY CLASSIFICATION 18, SECURITY CLASSIFICATION 19, SECURITY CLASSIFICATION
OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

NSN 7540-01-28U-5500

15. NUMBER OF PAGES

74
16. PRICE CODE

A04

20, LIMITATION
OF ABSTRACT

UL

Stan¢lar¢l Form 298 (HEY. 2-89)
Prescribed by ANSI Std. Z-39-18
298-102

